High-Velocity Impact Damage Assessment of Aluminum-Honeycomb-Cored Banana-Fiber-Reinforced Composite Structures Under Elevated Temperatures

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
S. Vignesh, D. Muniraj, M. Varsha, V. M. Sreehari
{"title":"High-Velocity Impact Damage Assessment of Aluminum-Honeycomb-Cored Banana-Fiber-Reinforced Composite Structures Under Elevated Temperatures","authors":"S. Vignesh,&nbsp;D. Muniraj,&nbsp;M. Varsha,&nbsp;V. M. Sreehari","doi":"10.1007/s12221-024-00768-1","DOIUrl":null,"url":null,"abstract":"<div><p>The impact damage of honeycomb sandwich structures with banana-fiber-reinforced polymer (BFRP) composite faceplates under high-velocity impacts at elevated temperatures is evaluated in present experimental study. BFRP composites were manufactured using vacuum-assisted resin transfer method. The high-velocity impact test was conducted using single-stage gas gun which shows sandwich structures with BFRP faceplates have higher energy absorption than the BFRP plates alone. It was observed that the BFRP composite plate perforates at 65.22 m/s, whereas the top faceplate of the BFRP sandwich structure perforates at 120 m/s. The gas gun with thermal setup was employed to investigate the high-velocity impact at higher temperatures. The matrix of the composite plays a crucial role when impacting at high temperature. When compared to the impact at 70 °C and 150 °C, the composite shows high-energy absorption at 110 °C. The results obtained in the present study throws light on the crashworthiness aspects of BFRP composites and sandwich structures with BFRP faceplates at room and elevated temperature under high-velocity impact loads.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4899 - 4907"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00768-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

The impact damage of honeycomb sandwich structures with banana-fiber-reinforced polymer (BFRP) composite faceplates under high-velocity impacts at elevated temperatures is evaluated in present experimental study. BFRP composites were manufactured using vacuum-assisted resin transfer method. The high-velocity impact test was conducted using single-stage gas gun which shows sandwich structures with BFRP faceplates have higher energy absorption than the BFRP plates alone. It was observed that the BFRP composite plate perforates at 65.22 m/s, whereas the top faceplate of the BFRP sandwich structure perforates at 120 m/s. The gas gun with thermal setup was employed to investigate the high-velocity impact at higher temperatures. The matrix of the composite plays a crucial role when impacting at high temperature. When compared to the impact at 70 °C and 150 °C, the composite shows high-energy absorption at 110 °C. The results obtained in the present study throws light on the crashworthiness aspects of BFRP composites and sandwich structures with BFRP faceplates at room and elevated temperature under high-velocity impact loads.

高温下铝蜂窝芯香蕉纤维增强复合材料结构高速冲击损伤评估
本文研究了香蕉纤维增强聚合物(BFRP)复合面板蜂窝夹层结构在高温高速冲击下的冲击损伤。采用真空辅助树脂转移法制备BFRP复合材料。采用单级气枪进行高速冲击试验,结果表明,复合玻璃钢面板的夹层结构比单独复合玻璃钢面板具有更高的吸能性能。结果表明,BFRP复合材料板的穿孔速度为65.22 m/s,而BFRP夹层结构的顶面板的穿孔速度为120 m/s。采用带热装置的气枪对高温下的高速撞击进行了研究。复合材料的基体在高温冲击中起着至关重要的作用。与70°C和150°C时的冲击相比,复合材料在110°C时表现出高能吸收。本研究的结果揭示了BFRP复合材料和带有BFRP面板的夹层结构在室温和高温下高速冲击载荷下的耐撞性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信