Understanding Broad Polydispersity in Step-growth Polymerization via Catalyst Competition Mechanism

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Donglai Tian, Jie Wang, Xiaohua Huang, Yun Ding, Aiguo Hu
{"title":"Understanding Broad Polydispersity in Step-growth Polymerization via Catalyst Competition Mechanism","authors":"Donglai Tian,&nbsp;Jie Wang,&nbsp;Xiaohua Huang,&nbsp;Yun Ding,&nbsp;Aiguo Hu","doi":"10.1007/s10118-024-3217-2","DOIUrl":null,"url":null,"abstract":"<div><p>Conjugated polymers are mainly synthesized by cross-coupling polymerizations catalyzed with transition metal (Pd, Ni) catalysts through step-growth polymerization (SGP) mechanism. According to the classical theory of SGP, the polymer dispersion index (<i>Ð</i>) of the synthesized polymers will never be higher than 2. However, the cases where conjugated polymers synthesized with <i>Ð</i> value far exceeding 2 are very common in reality, which severely limits their processing property, performance and applications. To investigate the reason behind the <i>Ð</i> value deviation from the theoretical value of SGP, direct arylation polycondensation (DArP) of 2-bromo-3-hexylthiophene (3HT) was chosen as the model reaction, and the reaction process was tracked using gel permeation chromatography analysis. When Pd(OAc)<sub>2</sub> was used as the catalyst, the <i>Ð</i> value linearly increased with the increase of the weight-average molecular weight (<i>M</i><sub><i>w</i></sub>) of polymer (P3HT) after a short period and reached up to 7.2 at prolonged reaction time. Scanning transmission electron microscopic images of the reaction mixture showed the fibril-like aggregation of P3HT and assembling of Pd species in P3HT aggregates. A catalyst competition mechanism was thus proposed, together with numerical calculation, giving a good fitting to the experimental results, which is believed to have far-reaching significance for guiding the design, synthesis and processing of conjugated polymers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"1897 - 1904"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3217-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugated polymers are mainly synthesized by cross-coupling polymerizations catalyzed with transition metal (Pd, Ni) catalysts through step-growth polymerization (SGP) mechanism. According to the classical theory of SGP, the polymer dispersion index (Ð) of the synthesized polymers will never be higher than 2. However, the cases where conjugated polymers synthesized with Ð value far exceeding 2 are very common in reality, which severely limits their processing property, performance and applications. To investigate the reason behind the Ð value deviation from the theoretical value of SGP, direct arylation polycondensation (DArP) of 2-bromo-3-hexylthiophene (3HT) was chosen as the model reaction, and the reaction process was tracked using gel permeation chromatography analysis. When Pd(OAc)2 was used as the catalyst, the Ð value linearly increased with the increase of the weight-average molecular weight (Mw) of polymer (P3HT) after a short period and reached up to 7.2 at prolonged reaction time. Scanning transmission electron microscopic images of the reaction mixture showed the fibril-like aggregation of P3HT and assembling of Pd species in P3HT aggregates. A catalyst competition mechanism was thus proposed, together with numerical calculation, giving a good fitting to the experimental results, which is believed to have far-reaching significance for guiding the design, synthesis and processing of conjugated polymers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信