Interferometers Utilizing Reversible X-ray-induced Chemical Changes in Poly(N-isopropylacrylamide) Microgels

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Ya-Jie Wang, Ping Zhang, Michael J. Serpe, Hong Chen, Liang Hu
{"title":"Interferometers Utilizing Reversible X-ray-induced Chemical Changes in Poly(N-isopropylacrylamide) Microgels","authors":"Ya-Jie Wang,&nbsp;Ping Zhang,&nbsp;Michael J. Serpe,&nbsp;Hong Chen,&nbsp;Liang Hu","doi":"10.1007/s10118-024-3223-4","DOIUrl":null,"url":null,"abstract":"<div><p>Photonic materials, which react to light, have garnered interest due to their capability to exhibit adjustable structural colors. Typically, light targets the UV, visible, or near-IR spectrums. In this study, microgel-based photonic materials that are capable of reversibly responding to X-rays have been engineered. To accomplish this, azobenzene (Azo)-containing poly(<i>N</i>-isopropylacrylamide) (pNIPAm)-based microgels are synthesized. Subsequently, ZnS scintillator and Cr/Au are applied on each side of the poly(methyl methacrylate (PMMA) substrate. Subsequently, the Azo MG monolayer is deposited onto the Au surface, followed by the deposition of an additional layer of Cr/Au. This process generates ZnS/PMMA/Cr/Au/Azo MG/Cr/Au or ZnS/Au-Azo MG-Au structure. Functioning as a typical interferometer, ZnS/Au-Azo MG-Au demonstrates tunable colors based on the separation distance between the two Au layers. The ZnS scintillator can absorb and convert X-rays into UV light, initiating the transition of the Azo groups from a <i>trans</i> to a <i>cis</i> state. Consequently, this transition causes the Azo MG to swell. As Azo MG swells, the distance between the two Au layers increases, resulting in a red-shift of approximately 350 nm in the optical signal of the ZnS/Au-Azo MG-Au interferometer. Remarkably, this X-ray responsivity of the interferometer is reversible, as it returns to its initial state after being stored in the dark for 24 h. To demonstrate its capabilities, the ZnS/Au-Azo MG-Au interferometer successfully releases a drug when triggered by X-ray stimulation, thus validating its potential. The microgel-based interferometers hold significant promise for applications in chemoradiotherapy, radiobiology, and actuators in space.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"1915 - 1924"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3223-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic materials, which react to light, have garnered interest due to their capability to exhibit adjustable structural colors. Typically, light targets the UV, visible, or near-IR spectrums. In this study, microgel-based photonic materials that are capable of reversibly responding to X-rays have been engineered. To accomplish this, azobenzene (Azo)-containing poly(N-isopropylacrylamide) (pNIPAm)-based microgels are synthesized. Subsequently, ZnS scintillator and Cr/Au are applied on each side of the poly(methyl methacrylate (PMMA) substrate. Subsequently, the Azo MG monolayer is deposited onto the Au surface, followed by the deposition of an additional layer of Cr/Au. This process generates ZnS/PMMA/Cr/Au/Azo MG/Cr/Au or ZnS/Au-Azo MG-Au structure. Functioning as a typical interferometer, ZnS/Au-Azo MG-Au demonstrates tunable colors based on the separation distance between the two Au layers. The ZnS scintillator can absorb and convert X-rays into UV light, initiating the transition of the Azo groups from a trans to a cis state. Consequently, this transition causes the Azo MG to swell. As Azo MG swells, the distance between the two Au layers increases, resulting in a red-shift of approximately 350 nm in the optical signal of the ZnS/Au-Azo MG-Au interferometer. Remarkably, this X-ray responsivity of the interferometer is reversible, as it returns to its initial state after being stored in the dark for 24 h. To demonstrate its capabilities, the ZnS/Au-Azo MG-Au interferometer successfully releases a drug when triggered by X-ray stimulation, thus validating its potential. The microgel-based interferometers hold significant promise for applications in chemoradiotherapy, radiobiology, and actuators in space.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信