Xuebin Hou, Meihong Fan, Shenyi Zheng, Xiuyu Shen, Chen Shi
{"title":"Washing Resistant Antibacterial PET Composite Fibers Fabricated by Melt Spinning","authors":"Xuebin Hou, Meihong Fan, Shenyi Zheng, Xiuyu Shen, Chen Shi","doi":"10.1007/s12221-024-00787-y","DOIUrl":null,"url":null,"abstract":"<div><p>Polyhexamethylene biguanide (PHMB) is a new type of antibacterial finishing agent which has good antibacterial effect and high safety, but poor heat resistance and the lack of functional group limit its effective application in polyester fibers. In this work, PHMB was highly functionalized by epoxy modification. Thus, an antibacterial composite polyester fibers consisting of modified PHMB, ZnO nanoparticles, and PET matrix were successfully fabricated through melt spinning, which exhibited great morphology without fibrous fracture and thermostability. In addition, the antibacterial activity test indicated that this composite fibers possess effective antibacterial effect and washable resistance, which antibacterial rates against Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) still could reach 90.4% and 92.2% after 50 times of washing, respectively. And this strategy can be extended to the fabrication of other antibacterial polyester fibers.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4689 - 4698"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00787-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
Polyhexamethylene biguanide (PHMB) is a new type of antibacterial finishing agent which has good antibacterial effect and high safety, but poor heat resistance and the lack of functional group limit its effective application in polyester fibers. In this work, PHMB was highly functionalized by epoxy modification. Thus, an antibacterial composite polyester fibers consisting of modified PHMB, ZnO nanoparticles, and PET matrix were successfully fabricated through melt spinning, which exhibited great morphology without fibrous fracture and thermostability. In addition, the antibacterial activity test indicated that this composite fibers possess effective antibacterial effect and washable resistance, which antibacterial rates against Escherichia coli (E.coli) and Staphylococcus aureus (S. aureus) still could reach 90.4% and 92.2% after 50 times of washing, respectively. And this strategy can be extended to the fabrication of other antibacterial polyester fibers.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers