Investigation into the Role of Z-Fiber Orientation in Low-Velocity Impact Behavior of Sandwich-Structured Composite: Numerical and Experimental Analysis

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Fatemeh Hasanalizadeh, Hadi Dabiryan
{"title":"Investigation into the Role of Z-Fiber Orientation in Low-Velocity Impact Behavior of Sandwich-Structured Composite: Numerical and Experimental Analysis","authors":"Fatemeh Hasanalizadeh,&nbsp;Hadi Dabiryan","doi":"10.1007/s12221-024-00732-z","DOIUrl":null,"url":null,"abstract":"<div><p>Sandwich composites reinforced with weft-knitted spacer fabrics (WKSF) have a high potential for use in low-velocity impact applications due to the presence of Z-fibers. The present research fabricated sandwich composites using C-glass weft-knitted spacer fabrics and epoxy resin. Three different architectures, i.e., 1 × 1-Rib gaiting, 3 × 3-Rib gaiting, and 5 × 5-Rib, were used to achieve different orientations of Z-fibers. Low-velocity impact test was carried out on the prepared samples. Also, the impact behavior of the sandwich composite was simulated using ABAQUS standard/explicit. The experimental and numerical results show that Z-fibers affect the low-velocity impact behavior of sandwich composites. Based on experiments, the lower maximum reduced acceleration of the impactor and higher contact duration in 3 × 3 Rib-gating means that this specimen has more impact resistance. The indentation percentages of 1 × 1-Rib gaiting, 3 × 3-Rib gaiting, and 5 × 5-Rib gaiting samples were 37%, 34%, and 91%, respectively. In addition, considering the thickness of composites, the experimental indentation of 3 × 3 Rib-gating is lower than other samples which is confirmed by the numerical displacement of the impactor. Numerical analysis showed that the elastic modulus of Z-fibers, its position, and boundary conditions affected stress distribution. The discontinuity among Z-fibers prevents the transfer of stress from the impact area to the outside of this area. Generally, composites reinforced with 3 × 3-Rib gaiting structures show the highest resistance to impact stiffness.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4807 - 4822"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00732-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

Sandwich composites reinforced with weft-knitted spacer fabrics (WKSF) have a high potential for use in low-velocity impact applications due to the presence of Z-fibers. The present research fabricated sandwich composites using C-glass weft-knitted spacer fabrics and epoxy resin. Three different architectures, i.e., 1 × 1-Rib gaiting, 3 × 3-Rib gaiting, and 5 × 5-Rib, were used to achieve different orientations of Z-fibers. Low-velocity impact test was carried out on the prepared samples. Also, the impact behavior of the sandwich composite was simulated using ABAQUS standard/explicit. The experimental and numerical results show that Z-fibers affect the low-velocity impact behavior of sandwich composites. Based on experiments, the lower maximum reduced acceleration of the impactor and higher contact duration in 3 × 3 Rib-gating means that this specimen has more impact resistance. The indentation percentages of 1 × 1-Rib gaiting, 3 × 3-Rib gaiting, and 5 × 5-Rib gaiting samples were 37%, 34%, and 91%, respectively. In addition, considering the thickness of composites, the experimental indentation of 3 × 3 Rib-gating is lower than other samples which is confirmed by the numerical displacement of the impactor. Numerical analysis showed that the elastic modulus of Z-fibers, its position, and boundary conditions affected stress distribution. The discontinuity among Z-fibers prevents the transfer of stress from the impact area to the outside of this area. Generally, composites reinforced with 3 × 3-Rib gaiting structures show the highest resistance to impact stiffness.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信