Qingliu Wu, Songjia Luo, Lu Wang, Baolei Dong, Hao Qu and Lei Zheng
{"title":"Detection of SARS-CoV-2 and noroviruses in cold-chain food samples using aptamer-functionalized graphene field-effect transistors†","authors":"Qingliu Wu, Songjia Luo, Lu Wang, Baolei Dong, Hao Qu and Lei Zheng","doi":"10.1039/D4SD00248B","DOIUrl":null,"url":null,"abstract":"<p >Given the susceptibility of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and Norovirus (NoV) to survive in cold chain food, thereby posing significant public health risks, we present a novel approach for biosensor development utilizing a graphene field-effect transistor (GFET) modified with nucleic acid aptamers. The biosensor's innovative design incorporates 1-pyrenebutyric acid <em>N</em>-hydroxysuccinimide ester (PBASE) as a coupling agent to facilitate the attachment of nucleic acid aptamers onto channel graphene. This modification induces a redistribution of charge on the graphene surface, resulting in a shift of the Dirac point upon target capture by the nucleic acid aptamer. Through this pioneering methodology, we successfully engineered SARS-CoV-2 GFET and NoV GFET biosensors capable of detecting trace amounts of SARS-CoV-2 and norovirus within a rapid 5-minute timeframe, showcasing detection limits of 33 fg mL<small><sup>−1</sup></small> and 6.17 pg mL<small><sup>−1</sup></small>, respectively. Subsequently, we applied these sensors to detect SARS-CoV-2 in frozen meat and norovirus in shellfish, yielding promising results with excellent specificity and stability. This groundbreaking sensing mechanism holds significant promise for the detection of foodborne viruses across a diverse range of food samples.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 12","pages":" 1947-1956"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00248b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sd/d4sd00248b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Given the susceptibility of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and Norovirus (NoV) to survive in cold chain food, thereby posing significant public health risks, we present a novel approach for biosensor development utilizing a graphene field-effect transistor (GFET) modified with nucleic acid aptamers. The biosensor's innovative design incorporates 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE) as a coupling agent to facilitate the attachment of nucleic acid aptamers onto channel graphene. This modification induces a redistribution of charge on the graphene surface, resulting in a shift of the Dirac point upon target capture by the nucleic acid aptamer. Through this pioneering methodology, we successfully engineered SARS-CoV-2 GFET and NoV GFET biosensors capable of detecting trace amounts of SARS-CoV-2 and norovirus within a rapid 5-minute timeframe, showcasing detection limits of 33 fg mL−1 and 6.17 pg mL−1, respectively. Subsequently, we applied these sensors to detect SARS-CoV-2 in frozen meat and norovirus in shellfish, yielding promising results with excellent specificity and stability. This groundbreaking sensing mechanism holds significant promise for the detection of foodborne viruses across a diverse range of food samples.