Low-Complexity Nonlinear Tomlinson-Harashima Precoding Based on Absolute-Term for ZR Inter-DCI

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhuo Chen;Jie Zhang;Zipeng Liang;Xiaoxiao Dai;Qi Yang;Liang Wang;Lei Deng;Mengfan Cheng;Deming Liu
{"title":"Low-Complexity Nonlinear Tomlinson-Harashima Precoding Based on Absolute-Term for ZR Inter-DCI","authors":"Zhuo Chen;Jie Zhang;Zipeng Liang;Xiaoxiao Dai;Qi Yang;Liang Wang;Lei Deng;Mengfan Cheng;Deming Liu","doi":"10.1109/LPT.2024.3504836","DOIUrl":null,"url":null,"abstract":"Due to the sensitivity to cost and power consumption, the intensity modulation direct detection (IM/DD) transmission system attracts significant interest in inter-data center interconnections. In medium reach IM/DD transmission systems, chromatic dispersion caused power fading effect appears to be a major performance limiting problem for double sideband (DSB) signal. Tomlinson-Harashima Precoding (THP) is an effective method for compensating for the dispersion at the transmitter side. By incorporating nonlinear kernels into the transfer function, the nonlinear THP can compensate both the dispersion and the nonlinear distortion of the signal and improve the performance of the system. However, the added nonlinear kernels will significantly increase the complexity. To reduce the complexity of nonlinear THP, we propose a low-complexity absolute-term kernel based nonlinear THP scheme. Compared with the conventional Volterra kernel based THP scheme, the proposed methods can reduce the number of multipliers by 50%-60% without performance degradation. We successfully demonstrate a 70-km 40-Gbaud and a 90-km 30-Gbaud DSB PAM-4 C-band IM/DD transmission over dispersion-uncompensated links.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 1","pages":"17-20"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10764742/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the sensitivity to cost and power consumption, the intensity modulation direct detection (IM/DD) transmission system attracts significant interest in inter-data center interconnections. In medium reach IM/DD transmission systems, chromatic dispersion caused power fading effect appears to be a major performance limiting problem for double sideband (DSB) signal. Tomlinson-Harashima Precoding (THP) is an effective method for compensating for the dispersion at the transmitter side. By incorporating nonlinear kernels into the transfer function, the nonlinear THP can compensate both the dispersion and the nonlinear distortion of the signal and improve the performance of the system. However, the added nonlinear kernels will significantly increase the complexity. To reduce the complexity of nonlinear THP, we propose a low-complexity absolute-term kernel based nonlinear THP scheme. Compared with the conventional Volterra kernel based THP scheme, the proposed methods can reduce the number of multipliers by 50%-60% without performance degradation. We successfully demonstrate a 70-km 40-Gbaud and a 90-km 30-Gbaud DSB PAM-4 C-band IM/DD transmission over dispersion-uncompensated links.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信