Cameron M. Naraine;Batoul Hashemi;Niloofar Majidian Taleghani;Jocelyn N. Westwood-Bachman;Cameron Horvath;Bruno L. Segat Frare;Hamidu M. Mbonde;Pooya Torab Ahmadi;Kevin Setzer;Alexandria McKinlay;Khadijeh Miarabbas Kiani;Renjie Wang;Ponnambalam Ravi Selvaganapathy;Peter Mascher;Andrew P. Knights;Jens H. Schmid;Pavel Cheben;Mirwais Aktary;Jonathan D. B. Bradley
{"title":"A Moderate Confinement O-, S-, C-, and L-Band Silicon Nitride Platform Enabled by a Rapid Prototyping Integrated Photonics Foundry Process","authors":"Cameron M. Naraine;Batoul Hashemi;Niloofar Majidian Taleghani;Jocelyn N. Westwood-Bachman;Cameron Horvath;Bruno L. Segat Frare;Hamidu M. Mbonde;Pooya Torab Ahmadi;Kevin Setzer;Alexandria McKinlay;Khadijeh Miarabbas Kiani;Renjie Wang;Ponnambalam Ravi Selvaganapathy;Peter Mascher;Andrew P. Knights;Jens H. Schmid;Pavel Cheben;Mirwais Aktary;Jonathan D. B. Bradley","doi":"10.1109/JPHOT.2024.3503287","DOIUrl":null,"url":null,"abstract":"We describe a rapid prototyping process for silicon nitride photonic integrated circuits operating at wavelengths around 1.3 and 1.5 μm. Moderate confinement silicon nitride waveguides and other essential integrated photonic components, such as fiber-chip couplers, microring resonators, multimode interference-based 3-dB power splitters, and subwavelength grating metamaterial waveguides, were fabricated and characterized and are reported. The prototyping platform features a 400-nm-thick layer of silicon nitride grown via low-pressure chemical vapour deposition onto 4” silicon thermal oxide wafers and uses direct-write electron beam lithography to define single mode waveguide structures that exhibit losses of <1.3 dB/cm across the O-band (1260–1360 nm), <1.8 dB/cm across the S-band (1460–1530 nm), <1.6 dB/cm across the C-band (1530–1565 nm), and <0.7 dB/cm across the L-band (1565–1625 nm) for both transverse electric (TE) and transverse magnetic (TM) polarizations. The reported components were compiled into a process design kit to accompany the platform, which is commercially available through the NanoSOI Design Center operated by Applied Nanotools Inc. with five multi-project wafer runs per year that have fast turnaround times on the scale of weeks rather than months. This provides a route toward the rapid fabrication of silicon nitride chip-based passive and thermo-optic active photonic devices with critical resolution down to 120 nm, making it an attractive solution for entry-level designers, device innovators, and small companies looking to incorporate integrated silicon nitride circuits into early-stage applications of silicon photonics.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-15"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10758930","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10758930/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a rapid prototyping process for silicon nitride photonic integrated circuits operating at wavelengths around 1.3 and 1.5 μm. Moderate confinement silicon nitride waveguides and other essential integrated photonic components, such as fiber-chip couplers, microring resonators, multimode interference-based 3-dB power splitters, and subwavelength grating metamaterial waveguides, were fabricated and characterized and are reported. The prototyping platform features a 400-nm-thick layer of silicon nitride grown via low-pressure chemical vapour deposition onto 4” silicon thermal oxide wafers and uses direct-write electron beam lithography to define single mode waveguide structures that exhibit losses of <1.3 dB/cm across the O-band (1260–1360 nm), <1.8 dB/cm across the S-band (1460–1530 nm), <1.6 dB/cm across the C-band (1530–1565 nm), and <0.7 dB/cm across the L-band (1565–1625 nm) for both transverse electric (TE) and transverse magnetic (TM) polarizations. The reported components were compiled into a process design kit to accompany the platform, which is commercially available through the NanoSOI Design Center operated by Applied Nanotools Inc. with five multi-project wafer runs per year that have fast turnaround times on the scale of weeks rather than months. This provides a route toward the rapid fabrication of silicon nitride chip-based passive and thermo-optic active photonic devices with critical resolution down to 120 nm, making it an attractive solution for entry-level designers, device innovators, and small companies looking to incorporate integrated silicon nitride circuits into early-stage applications of silicon photonics.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.