{"title":"Eisdspa: An Efficient and Secure Blockchain-Based Donation Scheme With Privacy Protection and Auditability","authors":"Yong Zhou;Hong Lei;Zijian Bao","doi":"10.1109/OJCOMS.2024.3504403","DOIUrl":null,"url":null,"abstract":"Charity donations are a critical mechanism for social resource distribution. However, traditional donation systems, typically centralized, are prone to issues such as data redundancy, vulnerability to single-point failures, and a deficiency in transparency and traceability. Although blockchain-based donation programs have emerged to address trust issues inherent in centralized models, they often neglect critical security concerns like privacy protection and identity authentication. This paper introduces Eisdspa, a blockchain-based donation system designed to offer identity authentication, auditability, and privacy protection. Specifically, we introduce an identity credential system that facilitates anonymous donations, shielding the identities of both donors and donees through the use of BBS+ signatures and zero-knowledge proofs of knowledge (ZKPoKs). Additionally, we ensure the integrity of goods donations by offering robust auditability and protecting user privacy with Pedersen commitments and ZKPoKs. We formally define the privacy aspects of Eisdspa and conduct a security analysis of the system under the random oracle model. A prototype implementation of the scheme, along with a comparative analysis with existing solutions, highlights the benefits of Eisdspa. Moreover, we assess the computational efficiency of Eisdspa, with experimental results indicating its high performance in computational overhead.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7498-7510"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759694/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Charity donations are a critical mechanism for social resource distribution. However, traditional donation systems, typically centralized, are prone to issues such as data redundancy, vulnerability to single-point failures, and a deficiency in transparency and traceability. Although blockchain-based donation programs have emerged to address trust issues inherent in centralized models, they often neglect critical security concerns like privacy protection and identity authentication. This paper introduces Eisdspa, a blockchain-based donation system designed to offer identity authentication, auditability, and privacy protection. Specifically, we introduce an identity credential system that facilitates anonymous donations, shielding the identities of both donors and donees through the use of BBS+ signatures and zero-knowledge proofs of knowledge (ZKPoKs). Additionally, we ensure the integrity of goods donations by offering robust auditability and protecting user privacy with Pedersen commitments and ZKPoKs. We formally define the privacy aspects of Eisdspa and conduct a security analysis of the system under the random oracle model. A prototype implementation of the scheme, along with a comparative analysis with existing solutions, highlights the benefits of Eisdspa. Moreover, we assess the computational efficiency of Eisdspa, with experimental results indicating its high performance in computational overhead.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.