Distributed IoT Communications With LEO Satellites: QoS Performance and Terminal Attempt Rate Schemes

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Swaroop Gopalam;Dhanushka Kudathanthirige;Iain B. Collings;Stephen V. Hanly;Hazer Inaltekin;Philip Whiting
{"title":"Distributed IoT Communications With LEO Satellites: QoS Performance and Terminal Attempt Rate Schemes","authors":"Swaroop Gopalam;Dhanushka Kudathanthirige;Iain B. Collings;Stephen V. Hanly;Hazer Inaltekin;Philip Whiting","doi":"10.1109/OJCOMS.2024.3496934","DOIUrl":null,"url":null,"abstract":"Low Earth Orbit (LEO) satellites are increasingly being used to provide connectivity for wide area Internet of Things (IoT) sensing applications. Distributed IoT terminals are not able to coordinate their uplink transmissions to the nano-satellites, and so operate in a grant-free mode. Quality-of-Service (QoS) depends on the transmission attempt success statistics, which are time-varying. This paper presents asymptotic analysis results that characterize the IoT terminal’s transmission success process. We show that it converges to an inhomogeneous Poisson process, in the large population regime, and characterize the time-dependent intensity as a function of the terminal location and the attempt rate scheme. We also propose three terminal attempt rate schemes that are solutions to max-min optimization problems. The performance of the proposed schemes are compared in terms of individual terminal QoS as well as the population-wide QoS distribution. Performance for various IoT applications is also presented.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7400-7418"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752551/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Low Earth Orbit (LEO) satellites are increasingly being used to provide connectivity for wide area Internet of Things (IoT) sensing applications. Distributed IoT terminals are not able to coordinate their uplink transmissions to the nano-satellites, and so operate in a grant-free mode. Quality-of-Service (QoS) depends on the transmission attempt success statistics, which are time-varying. This paper presents asymptotic analysis results that characterize the IoT terminal’s transmission success process. We show that it converges to an inhomogeneous Poisson process, in the large population regime, and characterize the time-dependent intensity as a function of the terminal location and the attempt rate scheme. We also propose three terminal attempt rate schemes that are solutions to max-min optimization problems. The performance of the proposed schemes are compared in terms of individual terminal QoS as well as the population-wide QoS distribution. Performance for various IoT applications is also presented.
低轨道卫星分布式物联网通信:QoS性能和终端尝试率方案
低地球轨道(LEO)卫星越来越多地用于为广域物联网(IoT)传感应用提供连接。分布式物联网终端无法协调其上行传输到纳米卫星,因此以无授权模式运行。服务质量(QoS)取决于传输尝试成功的统计数据,这些统计数据是时变的。本文给出了表征物联网终端传输成功过程的渐近分析结果。我们证明了它收敛于一个非齐次泊松过程,在大种群状态下,并将时间依赖的强度表征为终端位置和尝试率方案的函数。我们还提出了三种终端尝试率方案,它们是最大最小优化问题的解决方案。从单个终端的QoS和群体范围的QoS分布两方面比较了所提出方案的性能。还介绍了各种物联网应用的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信