Tianle Liu;Khawaja Fahad Masood;Jun Tong;Jiguang He;and Jiangtao Xi
{"title":"Two-Fold Sampling-Based Super-Resolution Estimation of Low-Rank MIMO-OFDM Channels","authors":"Tianle Liu;Khawaja Fahad Masood;Jun Tong;Jiguang He;and Jiangtao Xi","doi":"10.1109/OJCOMS.2024.3500782","DOIUrl":null,"url":null,"abstract":"This paper studies the estimation of low-rank multiple-input multiple-output (MIMO) wideband channels in orthogonal frequency division multiplexing (OFDM) systems which are commonly considered for high-frequency wireless communications, e.g., at millimeter wave (mmWave) and Terahertz (THz) bands. To reduce the overhead for channel estimation, we propose a novel solution based on two-fold sampling of the original channel matrix. A subchannel associated with a subset of subcarriers and antennas is first selected by deterministic sampling. Low-rank matrix completion (LRMC) based on random sampling is then used to further reduce the training overhead. Utilizing the Toeplitz structure of the covariance matrices of uniform linear arrays, the angles and delays are then estimated separately at low complexities using super-resolution algorithms. Finally, the path gains are estimated and associated with the path angles and delays, followed by the extrapolation of the full-dimensional channel. As only a small number of antennas and subcarriers are required in the training, the overall training overhead and computational complexity are very low. Numerical results demonstrate that the proposed two-fold sampling-based estimator can achieve high-accuracy channel estimation. Besides, the sampling patterns and complexity of the proposed estimator are analysed, which shows that the proposed solution can be configured to provide different performance-complexity tradeoffs.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7434-7446"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755153","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10755153/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the estimation of low-rank multiple-input multiple-output (MIMO) wideband channels in orthogonal frequency division multiplexing (OFDM) systems which are commonly considered for high-frequency wireless communications, e.g., at millimeter wave (mmWave) and Terahertz (THz) bands. To reduce the overhead for channel estimation, we propose a novel solution based on two-fold sampling of the original channel matrix. A subchannel associated with a subset of subcarriers and antennas is first selected by deterministic sampling. Low-rank matrix completion (LRMC) based on random sampling is then used to further reduce the training overhead. Utilizing the Toeplitz structure of the covariance matrices of uniform linear arrays, the angles and delays are then estimated separately at low complexities using super-resolution algorithms. Finally, the path gains are estimated and associated with the path angles and delays, followed by the extrapolation of the full-dimensional channel. As only a small number of antennas and subcarriers are required in the training, the overall training overhead and computational complexity are very low. Numerical results demonstrate that the proposed two-fold sampling-based estimator can achieve high-accuracy channel estimation. Besides, the sampling patterns and complexity of the proposed estimator are analysed, which shows that the proposed solution can be configured to provide different performance-complexity tradeoffs.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.