Fabry-Perot Interferometer Curvature Sensor Based on Microwave Photonic Filter Technique

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Tongqun Zhang;Xiaozhong Tian;Lanju Liang;Minghong Wang;Dianguo Ma;Jintao Wu;Yunquan Sun;Junbao Wang
{"title":"Fabry-Perot Interferometer Curvature Sensor Based on Microwave Photonic Filter Technique","authors":"Tongqun Zhang;Xiaozhong Tian;Lanju Liang;Minghong Wang;Dianguo Ma;Jintao Wu;Yunquan Sun;Junbao Wang","doi":"10.1109/LPT.2024.3504850","DOIUrl":null,"url":null,"abstract":"In this letter, we propose and experimentally demonstrate an approach to performing high-resolution and temperature-insensitive idea of a Fabry-Perot interferometer (FPI) curvature sensor utilizing microwave photonic filter (MPF) technique. A section of the capillary fiber is spliced between a single-mode fiber and a core-less fiber to form the air-gap FPI. The bending deformation of the FPI leads to changes in the fringe visibility (V) and free spectral range (FSR) of the interference pattern, which are converted into the changes in peak power and central frequency of the corresponding MPF. Consequently, the bending curvature can be recovered by tracking the frequency shift or the magnitude change. The experimental results show that the peak of the MPF decreases non-linearly with the increased curvature and a second-degree polynomial curve is fitted to predict the relationship. Compared with the fringe visibility change in optical domain, the peak power change of the MPF is enhanced by ~5 times. Meanwhile, the wavelength shift has a linear relationship with the curvature, and the sensitivity of 19.5 pm/m−1 is achieved in the curvature range of 3.3065-9.0552 m\n<inline-formula> <tex-math>$^{\\mathrm {-1}}$ </tex-math></inline-formula>\n with a resolution of 1.026 m−1. The central frequency shifts linearly with the increase of curvature, and the sensitivity is 0.86 MHz/m\n<inline-formula> <tex-math>$^{\\mathrm {-1}}$ </tex-math></inline-formula>\n with a resolution of \n<inline-formula> <tex-math>$1.16\\times 10 ^{-3}$ </tex-math></inline-formula>\nm−1, which is much larger than that obtained by tracking the wavelength shift.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"37 1","pages":"21-24"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10764713/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we propose and experimentally demonstrate an approach to performing high-resolution and temperature-insensitive idea of a Fabry-Perot interferometer (FPI) curvature sensor utilizing microwave photonic filter (MPF) technique. A section of the capillary fiber is spliced between a single-mode fiber and a core-less fiber to form the air-gap FPI. The bending deformation of the FPI leads to changes in the fringe visibility (V) and free spectral range (FSR) of the interference pattern, which are converted into the changes in peak power and central frequency of the corresponding MPF. Consequently, the bending curvature can be recovered by tracking the frequency shift or the magnitude change. The experimental results show that the peak of the MPF decreases non-linearly with the increased curvature and a second-degree polynomial curve is fitted to predict the relationship. Compared with the fringe visibility change in optical domain, the peak power change of the MPF is enhanced by ~5 times. Meanwhile, the wavelength shift has a linear relationship with the curvature, and the sensitivity of 19.5 pm/m−1 is achieved in the curvature range of 3.3065-9.0552 m $^{\mathrm {-1}}$ with a resolution of 1.026 m−1. The central frequency shifts linearly with the increase of curvature, and the sensitivity is 0.86 MHz/m $^{\mathrm {-1}}$ with a resolution of $1.16\times 10 ^{-3}$ m−1, which is much larger than that obtained by tracking the wavelength shift.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Technology Letters
IEEE Photonics Technology Letters 工程技术-工程:电子与电气
CiteScore
5.00
自引率
3.80%
发文量
404
审稿时长
2.0 months
期刊介绍: IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信