K.A. Sateesh, V.S. Yaliwal, B.K. Murugande, N.R. Banapurmath, P.V. Elumalai, Dhinesh Balasubramanian, Krupakaran Radhakrishnan Lawrence, Yasser Fouad, Manzoore Elahi M. Soudagar, Huu Cuong Le, Thanh Tuan Le, Md Abul Kalam, Chan Choon Kit, Yelamasetti Balram
{"title":"Effect of nano-particles on the combustion and emission characteristics of a dual fuel engine operated on biodiesel-producer gas combination","authors":"K.A. Sateesh, V.S. Yaliwal, B.K. Murugande, N.R. Banapurmath, P.V. Elumalai, Dhinesh Balasubramanian, Krupakaran Radhakrishnan Lawrence, Yasser Fouad, Manzoore Elahi M. Soudagar, Huu Cuong Le, Thanh Tuan Le, Md Abul Kalam, Chan Choon Kit, Yelamasetti Balram","doi":"10.1016/j.csite.2024.105560","DOIUrl":null,"url":null,"abstract":"In this experimental study, efforts were undertaken to augment the overall efficiency of a dual-fuel engine. This present study was conducted in three steps. In the initial phase, Aluminium oxyhydroxide (AlO(OH)) was synthesized and analyzed using UV–visible spectroscopy, XRD (X-ray diffraction), Thermogravimetric (TG) analysis, and Differential Scanning Calorimeter (DSC). In the second part of the study, the impact of AlO(OH) NP dosage on the performance of a producer gas-powered diesel engine was investigated. To optimize adequate AlO(OH) NPs addition, three working fluids are prepared by dissolving NPs in dairy scum oil methyl ester (DiSOME) biodiesel ranging from 20 to 60 ppm and varied in steps of 20. In the next phase, the present study examined the effect of 60 ppm of various NPs, including multi-walled carbon nanotubes (MWCNT), Aluminum oxide (Al2O3), and AlO(OH) on the combustion and emission characteristics of a 1-cylinder 4-stroke direct injection diesel engine operating in dual fuel mode using a combination of DiSOME and producer gas. The study concluded that DiSOME-PG operation with 60 ppm AlO(OH) and without nano-addition resulted in decreased BTE by 2.9 % and 14.6 % respectively compared to diesel-supported dual fuel operation. To the extent that exhaust levels are concerned, AlO(OH) addition to the DiSOME-PG combination lowers hydrocarbon (HC) and carbon monoxide (CO) emissions than identical fuel amalgamation without AlO(OH) NP. It is noticed that the retarded combustion related to the DiSOME-producer gas mixture can be improved with NP addition. The DiSOME-producer gas functioning with NPs addition is the individuality of this current effort.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"8 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105560","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this experimental study, efforts were undertaken to augment the overall efficiency of a dual-fuel engine. This present study was conducted in three steps. In the initial phase, Aluminium oxyhydroxide (AlO(OH)) was synthesized and analyzed using UV–visible spectroscopy, XRD (X-ray diffraction), Thermogravimetric (TG) analysis, and Differential Scanning Calorimeter (DSC). In the second part of the study, the impact of AlO(OH) NP dosage on the performance of a producer gas-powered diesel engine was investigated. To optimize adequate AlO(OH) NPs addition, three working fluids are prepared by dissolving NPs in dairy scum oil methyl ester (DiSOME) biodiesel ranging from 20 to 60 ppm and varied in steps of 20. In the next phase, the present study examined the effect of 60 ppm of various NPs, including multi-walled carbon nanotubes (MWCNT), Aluminum oxide (Al2O3), and AlO(OH) on the combustion and emission characteristics of a 1-cylinder 4-stroke direct injection diesel engine operating in dual fuel mode using a combination of DiSOME and producer gas. The study concluded that DiSOME-PG operation with 60 ppm AlO(OH) and without nano-addition resulted in decreased BTE by 2.9 % and 14.6 % respectively compared to diesel-supported dual fuel operation. To the extent that exhaust levels are concerned, AlO(OH) addition to the DiSOME-PG combination lowers hydrocarbon (HC) and carbon monoxide (CO) emissions than identical fuel amalgamation without AlO(OH) NP. It is noticed that the retarded combustion related to the DiSOME-producer gas mixture can be improved with NP addition. The DiSOME-producer gas functioning with NPs addition is the individuality of this current effort.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.