{"title":"Study of rectangular fin heat sink performance and prediction based on artificial neural network","authors":"Zheng Lan, Yu-hao Feng, Ying-wen Liu","doi":"10.1016/j.csite.2024.105569","DOIUrl":null,"url":null,"abstract":"The plate-fin heat sink is a widely used heat dissipation device in thermal management systems, playing a crucial role in maintaining the stable operation of electronic equipment and reducing economic costs. In this study, the wind tunnel experimental device was employed to test the thermal and hydraulic properties of a rectangular fin heat sink. The CFD model was utilized to investigate the Nusselt number and friction factor of the rectangular fin heat sink under varying Reynolds numbers, fin numbers, and fin widths. The results indicate that as Reynolds number increases, the friction factor decreases while the Nusselt number increases. An increase in fin number leads to a decrease in both Nusselt number and friction factor. Moreover, with an increase in fin width, the friction factor increases while changes occur differently for Nusselt number at different Reynolds numbers. Furthermore, a multi-layer feedforward neural network based on a genetic algorithm (GA-BP) is employed to predict both Nusselt number and friction factor; subsequently evaluating these predicted results. The findings demonstrate that GA-BP neural network can accurately and rapidly predict thermal and hydraulic properties of heat sinks under various conditions including different Reynolds numbers, fin numbers, and fin widths.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"19 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105569","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The plate-fin heat sink is a widely used heat dissipation device in thermal management systems, playing a crucial role in maintaining the stable operation of electronic equipment and reducing economic costs. In this study, the wind tunnel experimental device was employed to test the thermal and hydraulic properties of a rectangular fin heat sink. The CFD model was utilized to investigate the Nusselt number and friction factor of the rectangular fin heat sink under varying Reynolds numbers, fin numbers, and fin widths. The results indicate that as Reynolds number increases, the friction factor decreases while the Nusselt number increases. An increase in fin number leads to a decrease in both Nusselt number and friction factor. Moreover, with an increase in fin width, the friction factor increases while changes occur differently for Nusselt number at different Reynolds numbers. Furthermore, a multi-layer feedforward neural network based on a genetic algorithm (GA-BP) is employed to predict both Nusselt number and friction factor; subsequently evaluating these predicted results. The findings demonstrate that GA-BP neural network can accurately and rapidly predict thermal and hydraulic properties of heat sinks under various conditions including different Reynolds numbers, fin numbers, and fin widths.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.