Influence of quenching and tempering heat treatment on heat flux to the workpiece in dry milling of AISI 1045 steel

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Nícolas Pinheiro Ramos, Mariana de Melo Antunes, Antonio Augusto Araújo Pinto da Silva, Gilmar Guimarães, Sandro Metrevelle Marcondes de Lima e Silva
{"title":"Influence of quenching and tempering heat treatment on heat flux to the workpiece in dry milling of AISI 1045 steel","authors":"Nícolas Pinheiro Ramos, Mariana de Melo Antunes, Antonio Augusto Araújo Pinto da Silva, Gilmar Guimarães, Sandro Metrevelle Marcondes de Lima e Silva","doi":"10.1016/j.csite.2024.105567","DOIUrl":null,"url":null,"abstract":"Dry machining offers cost and environmental benefits in metal cutting, but the absence of cutting fluid can elevate workpiece temperature, impacting surface quality and dimensional accuracy. This study explores and quantifies the impact of quenching and tempering heat treatment on the heat flux to the work material in dry milling AISI 1045 steel. Inverse heat transfer analysis determines the maximum magnitude of a moving Gaussian heat source corresponding to the heat load into the milled part. The inverse estimates are obtained from temperature measurements taken when machining samples subject to different heat treatment conditions. The estimated heat flux and the measured temperature are discussed in the context of the metallo-thermomechanical connection with microstructural aspects, hardness, and thermal properties. The results reveal a substantial increase in thermal energy transferred to the milled steel when quenched and tempered, with a 33 % higher heat input compared to normalized conditions. This condition is mainly attributed to the increased hardness and reduced thermal conductivity of the tempered martensitic structure obtained through hardening. The estimates show deviations of less than ±5 %, according to uncertainty calculations based on thermal sensitivity and sensor accuracy.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"76 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105567","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dry machining offers cost and environmental benefits in metal cutting, but the absence of cutting fluid can elevate workpiece temperature, impacting surface quality and dimensional accuracy. This study explores and quantifies the impact of quenching and tempering heat treatment on the heat flux to the work material in dry milling AISI 1045 steel. Inverse heat transfer analysis determines the maximum magnitude of a moving Gaussian heat source corresponding to the heat load into the milled part. The inverse estimates are obtained from temperature measurements taken when machining samples subject to different heat treatment conditions. The estimated heat flux and the measured temperature are discussed in the context of the metallo-thermomechanical connection with microstructural aspects, hardness, and thermal properties. The results reveal a substantial increase in thermal energy transferred to the milled steel when quenched and tempered, with a 33 % higher heat input compared to normalized conditions. This condition is mainly attributed to the increased hardness and reduced thermal conductivity of the tempered martensitic structure obtained through hardening. The estimates show deviations of less than ±5 %, according to uncertainty calculations based on thermal sensitivity and sensor accuracy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信