Rong Liu, Xu-Guang Wang, Hao Wang, Quan Wang, Yang-Fan Cheng
{"title":"Thermal decomposition behaviors and reaction mechanism of emulsion explosive with the addition of TiH2 powders","authors":"Rong Liu, Xu-Guang Wang, Hao Wang, Quan Wang, Yang-Fan Cheng","doi":"10.1016/j.csite.2024.105583","DOIUrl":null,"url":null,"abstract":"To explore compatibility and thermal stability of the emulsion explosive added with TiH<ce:inf loc=\"post\">2</ce:inf> powders, the actions of TiH<ce:inf loc=\"post\">2</ce:inf> powders on the thermal decomposition properties, reaction product compositions of the emulsion explosives were researched by TGA-FTIR, TG-DSC, XRD and XPS. The results manifested that the adding of 7.6 μm TiH<ce:inf loc=\"post\">2</ce:inf> powders in the range of 2–8 mass% could reduce the initial decomposition temperature of the emulsion explosive and promote the thermal decomposition reaction. The apparent activation energies of pure emulsion explosive sample were 110.5 and 107.05 kJ/mol, respectively. When the addition of 7.6 μm TiH<ce:inf loc=\"post\">2</ce:inf> powders to emulsion explosive was 2 mass%, the apparent activation energy decreased to the minimum value, which were 100.1 and 95.9 kJ/mol, respectively. While the initial decomposition temperatures and the activation energies of explosive samples added with TiH<ce:inf loc=\"post\">2</ce:inf> powders with particle sizes of 33.7, 50.1 and 120.0 μm both continued to rise. Furthermore, based on the experimental results, the thermolysis mechanism of emulsion explosive added with TiH<ce:inf loc=\"post\">2</ce:inf> powders was proposed. This study is helpful to further understand the thermolysis properties and reaction mechanism of emulsion explosives containing TiH<ce:inf loc=\"post\">2</ce:inf> powders, and offer theoretic direction for the formulation optimization as well as industrial production of high-energetic emulsion explosives.","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"5 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.csite.2024.105583","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
To explore compatibility and thermal stability of the emulsion explosive added with TiH2 powders, the actions of TiH2 powders on the thermal decomposition properties, reaction product compositions of the emulsion explosives were researched by TGA-FTIR, TG-DSC, XRD and XPS. The results manifested that the adding of 7.6 μm TiH2 powders in the range of 2–8 mass% could reduce the initial decomposition temperature of the emulsion explosive and promote the thermal decomposition reaction. The apparent activation energies of pure emulsion explosive sample were 110.5 and 107.05 kJ/mol, respectively. When the addition of 7.6 μm TiH2 powders to emulsion explosive was 2 mass%, the apparent activation energy decreased to the minimum value, which were 100.1 and 95.9 kJ/mol, respectively. While the initial decomposition temperatures and the activation energies of explosive samples added with TiH2 powders with particle sizes of 33.7, 50.1 and 120.0 μm both continued to rise. Furthermore, based on the experimental results, the thermolysis mechanism of emulsion explosive added with TiH2 powders was proposed. This study is helpful to further understand the thermolysis properties and reaction mechanism of emulsion explosives containing TiH2 powders, and offer theoretic direction for the formulation optimization as well as industrial production of high-energetic emulsion explosives.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.