On the Extrapolation of Generative Adversarial Networks for Downscaling Precipitation Extremes in Warmer Climates

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Neelesh Rampal, Peter B. Gibson, Steven Sherwood, Gab Abramowitz
{"title":"On the Extrapolation of Generative Adversarial Networks for Downscaling Precipitation Extremes in Warmer Climates","authors":"Neelesh Rampal,&nbsp;Peter B. Gibson,&nbsp;Steven Sherwood,&nbsp;Gab Abramowitz","doi":"10.1029/2024GL112492","DOIUrl":null,"url":null,"abstract":"<p>While deep-learning downscaling algorithms can generate fine-scale climate projections cost-effectively, it is unclear how effectively they extrapolate to unobserved climates. We assess the extrapolation capabilities of a deterministic Convolutional Neural Network baseline and a Generative Adversarial Network (GAN) built with this baseline, trained to predict daily precipitation simulated by a Regional Climate Model (RCM) over New Zealand. Both approaches emulate future changes in annual mean precipitation well, when trained on historical data, though training on a future climate improves performance. For extreme precipitation (99.5th percentile), RCM simulations predict a robust end-of-century increase with future warming (∼5.8%/<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> $\\mathit{{}^{\\circ}}$</annotation>\n </semantics></math>C on average from five simulations). When trained on a future climate, GANs capture 97% of the warming-driven increase in extreme precipitation compared to 65% in a deterministic baseline. Even GANs trained historically capture 77% of this increase. Overall, GANs offer better generalization for downscaling extremes, which is important in applications relying on historical data.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 23","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112492","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112492","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While deep-learning downscaling algorithms can generate fine-scale climate projections cost-effectively, it is unclear how effectively they extrapolate to unobserved climates. We assess the extrapolation capabilities of a deterministic Convolutional Neural Network baseline and a Generative Adversarial Network (GAN) built with this baseline, trained to predict daily precipitation simulated by a Regional Climate Model (RCM) over New Zealand. Both approaches emulate future changes in annual mean precipitation well, when trained on historical data, though training on a future climate improves performance. For extreme precipitation (99.5th percentile), RCM simulations predict a robust end-of-century increase with future warming (∼5.8%/ ° $\mathit{{}^{\circ}}$ C on average from five simulations). When trained on a future climate, GANs capture 97% of the warming-driven increase in extreme precipitation compared to 65% in a deterministic baseline. Even GANs trained historically capture 77% of this increase. Overall, GANs offer better generalization for downscaling extremes, which is important in applications relying on historical data.

生成对抗网络在变暖气候下降尺度降水极值的外推
虽然深度学习降尺度算法可以经济有效地生成精细尺度的气候预测,但尚不清楚它们对未观测气候的外推效果如何。我们评估了确定性卷积神经网络基线和基于该基线构建的生成对抗网络(GAN)的外推能力,并对其进行了训练,以预测新西兰区域气候模型(RCM)模拟的日降水量。当用历史数据训练时,这两种方法都能很好地模拟年平均降水的未来变化,尽管用未来气候训练可以提高性能。对于极端降水(99.5百分位),RCM模拟预测,随着未来变暖,本世纪末将出现强劲增长(5次模拟的平均值为~ 5.8%/°$\mathit{{}^{\circ}} C)。当对未来气候进行训练时,gan捕获了97%的变暖驱动的极端降水增加,而在确定性基线中为65%。即使是经过历史训练的gan也能捕捉到77%的增长。总的来说,gan为降尺度极值提供了更好的泛化,这在依赖历史数据的应用中很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信