Correction to “Leaky-Integrate-and-Fire Mechanism in Exciton-Polariton Condensates for Photonic Spiking Neurons”

IF 9.8 1区 物理与天体物理 Q1 OPTICS
{"title":"Correction to “Leaky-Integrate-and-Fire Mechanism in Exciton-Polariton Condensates for Photonic Spiking Neurons”","authors":"","doi":"10.1002/lpor.202401760","DOIUrl":null,"url":null,"abstract":"<p>K. Tyszka, M. Furman, R. Mirek, M. Król, A. Opala, B. Seredyński, J. Suffczyński, W. Pacuski, M. Matuszewski, J. Szczytko, B. Piętka, Leaky Integrate-and-Fire Mechanism in Exciton–Polariton Condensates for Photonic Spiking Neurons. Laser Photonics Rev 2022, 17, 2100660. https://doi.org/10.1002/lpor.202100660</p><p>In this article, an error was identified in the caption and panel numbering of Figure 5. Panels (d) and (e) were inadvertently switched, and two of the panel references were omitted from the caption.</p><p>The revised version of Figure 5, along with its caption, is provided below.</p><p></p><p><b>Figure 5</b> (a) Dependence of the delay <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>t</mi>\n </mrow>\n <annotation>$\\Delta {\\mathrm{t}}$</annotation>\n </semantics></math> between the peak of the pumping pulse P(t) and the peak of the condensate emission <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{C}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math> on the peak pumping power P. (b, c) Evolution of condensate density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>C</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{C}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math> and the inactive reservoir density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{i}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math> for the two pumping powers marked in (a). (d, e) The corresponding evolution of the active reservoir density <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${{{\\mathrm{n}}}_{\\mathrm{R}}}( {\\mathrm{t}} )$</annotation>\n </semantics></math>. Parameters: <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>C</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>12</mn>\n </mrow>\n <annotation>${{{{\\gamma}}}_{\\mathrm{C}}} = 1/12$</annotation>\n </semantics></math> (1/ps), <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>R</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>200</mn>\n </mrow>\n <annotation>${{{{\\gamma}}}_{\\mathrm{R}}} = 1/200$</annotation>\n </semantics></math> (1/ps), <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mi>I</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>1000</mn>\n </mrow>\n <annotation>${{{{\\gamma}}}_{\\mathrm{I}}} = 1/1000$</annotation>\n </semantics></math> (1/ps), <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>=</mo>\n <mn>6</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>4</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\mathrm{R}} = 6 \\times {{10}^{ - 4}}$</annotation>\n </semantics></math>(<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mn>2</mn>\n <mspace></mspace>\n </mrow>\n </msup>\n </mrow>\n <annotation>${{\\umu}}{{{\\mathrm{m}}}^{2\\ }}$</annotation>\n </semantics></math>/ps), <span></span><math>\n <semantics>\n <mrow>\n <mi>κ</mi>\n <mo>=</mo>\n <mn>5</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>${{\\kappa}} = 5 \\times {{10}^{ - 2}}$</annotation>\n </semantics></math>(<span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mrow>\n <mn>2</mn>\n <mspace></mspace>\n </mrow>\n </msup>\n </mrow>\n <annotation>${{\\umu}}{{{\\mathrm{m}}}^{2\\ }}$</annotation>\n </semantics></math>/ps), <span></span><math>\n <semantics>\n <msub>\n <mi>P</mi>\n <mn>0</mn>\n </msub>\n <annotation>${{{\\mathrm{P}}}_0}$</annotation>\n </semantics></math> is the scaling parameter equal to 445 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n <mrow>\n <mi>C</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n <msub>\n <mi>γ</mi>\n <mrow>\n <mi>R</mi>\n <mspace></mspace>\n </mrow>\n </msub>\n <mo>/</mo>\n <mi>R</mi>\n </mrow>\n <annotation>${{{{\\gamma}}}_{{\\mathrm{C\\ }}}}{{{{\\gamma}}}_{{\\mathrm{R\\ }}}}/{\\mathrm{R}}$</annotation>\n </semantics></math>.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202401760","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202401760","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

K. Tyszka, M. Furman, R. Mirek, M. Król, A. Opala, B. Seredyński, J. Suffczyński, W. Pacuski, M. Matuszewski, J. Szczytko, B. Piętka, Leaky Integrate-and-Fire Mechanism in Exciton–Polariton Condensates for Photonic Spiking Neurons. Laser Photonics Rev 2022, 17, 2100660. https://doi.org/10.1002/lpor.202100660

In this article, an error was identified in the caption and panel numbering of Figure 5. Panels (d) and (e) were inadvertently switched, and two of the panel references were omitted from the caption.

The revised version of Figure 5, along with its caption, is provided below.

Figure 5 (a) Dependence of the delay Δ t $\Delta {\mathrm{t}}$ between the peak of the pumping pulse P(t) and the peak of the condensate emission n C ( t ) ${{{\mathrm{n}}}_{\mathrm{C}}}( {\mathrm{t}} )$ on the peak pumping power P. (b, c) Evolution of condensate density n C ( t ) ${{{\mathrm{n}}}_{\mathrm{C}}}( {\mathrm{t}} )$ and the inactive reservoir density n i ( t ) ${{{\mathrm{n}}}_{\mathrm{i}}}( {\mathrm{t}} )$ for the two pumping powers marked in (a). (d, e) The corresponding evolution of the active reservoir density n R ( t ) ${{{\mathrm{n}}}_{\mathrm{R}}}( {\mathrm{t}} )$ . Parameters: γ C = 1 / 12 ${{{{\gamma}}}_{\mathrm{C}}} = 1/12$ (1/ps), γ R = 1 / 200 ${{{{\gamma}}}_{\mathrm{R}}} = 1/200$ (1/ps), γ I = 1 / 1000 ${{{{\gamma}}}_{\mathrm{I}}} = 1/1000$ (1/ps), R = 6 × 10 4 ${\mathrm{R}} = 6 \times {{10}^{ - 4}}$ ( μ m 2 ${{\umu}}{{{\mathrm{m}}}^{2\ }}$ /ps), κ = 5 × 10 2 ${{\kappa}} = 5 \times {{10}^{ - 2}}$ ( μ m 2 ${{\umu}}{{{\mathrm{m}}}^{2\ }}$ /ps), P 0 ${{{\mathrm{P}}}_0}$ is the scaling parameter equal to 445 γ C γ R / R ${{{{\gamma}}}_{{\mathrm{C\ }}}}{{{{\gamma}}}_{{\mathrm{R\ }}}}/{\mathrm{R}}$ .

对“光子尖峰神经元激子-极化子凝聚体的漏-积-燃机制”的修正
K. Tyszka, M. Furman, R. Mirek, M. Król, A. Opala, B. Seredyński, J. Suffczyński, W. Pacuski, M. Matuszewski, J. Szczytko, B. Piętka,光子脉冲神经元激子-极化凝聚体的泄漏积分-燃烧机制。激光光子学,2022,17,2100660。在本文https://doi.org/10.1002/lpor.202100660In中,在图5的标题和面板编号中发现了一个错误。面板(d)和(e)被无意中切换,并且在标题中省略了两个面板参考文献。图5的修订版本及其标题如下所示。图5 (a)泵送脉冲峰值P(t)与凝析油排放峰值nC (t) ${{{\mathrm{n}}}_{\mathrm{C}}}( {\mathrm{t}} )$之间的延迟Δ¹$\Delta {\mathrm{t}}$与峰值泵送功率P的关系(b, c) (a)中标注的两种泵送功率下凝析油密度nC (t) ${{{\mathrm{n}}}_{\mathrm{C}}}( {\mathrm{t}} )$与非活动油藏密度ni (t) ${{{\mathrm{n}}}_{\mathrm{i}}}( {\mathrm{t}} )$的演化关系。(d, e)活动油藏密度nR (t) ${{{\mathrm{n}}}_{\mathrm{R}}}( {\mathrm{t}} )$的相应演化关系。参数:γC=1/12 ${{{{\gamma}}}_{\mathrm{C}}} = 1/12$ (1/ps), γR=1/200 ${{{{\gamma}}}_{\mathrm{R}}} = 1/200$ (1/ps), γI=1/1000 ${{{{\gamma}}}_{\mathrm{I}}} = 1/1000$ (1/ps), R=6×10−4 ${\mathrm{R}} = 6 \times {{10}^{ - 4}}$ (μ减去m2 ${{\umu}}{{{\mathrm{m}}}^{2\ }}$ /ps), κ=5×10−2 ${{\kappa}} = 5 \times {{10}^{ - 2}}$ (μ减去m2 ${{\umu}}{{{\mathrm{m}}}^{2\ }}$ /ps), P0 ${{{\mathrm{P}}}_0}$是缩放参数等于445 γC减去γR/R ${{{{\gamma}}}_{{\mathrm{C\ }}}}{{{{\gamma}}}_{{\mathrm{R\ }}}}/{\mathrm{R}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信