Nan Zhang, Zhisheng Zhou, Yidan An, Feng Qi, Ruoxi Xia, Gengxin Du, Tian Xia, Lingyi Ke, Ning Li, Francis R. Lin, Alex K.-Y. Jen, Hin-Lap Yip
{"title":"Modeling-Guided Design of Semitransparent Organic Photovoltaics with Improved Energy Harvesting and Saving Capabilities","authors":"Nan Zhang, Zhisheng Zhou, Yidan An, Feng Qi, Ruoxi Xia, Gengxin Du, Tian Xia, Lingyi Ke, Ning Li, Francis R. Lin, Alex K.-Y. Jen, Hin-Lap Yip","doi":"10.1002/aenm.202404129","DOIUrl":null,"url":null,"abstract":"Integrating semitransparent organic photovoltaics (ST-OPVs) into building structures is a promising technology that serves aesthetic purposes while retaining window functionality, and it also facilitates solar energy harvesting and heat insulation. However, balancing power conversion efficiency (PCE), visible light transmittance (VLT), infrared radiation rejection (IRR), and color rendering index (CRI) for window applications remains a significant challenge. In this study, ST-OPVs are developed that feature innovative near-infrared-absorbing materials. These devices are further coupled with an optical layer optimized through high-throughput optical modeling to fine-tune and enhance the different properties of the ST-OPVs. Specifically, ST-OPVs are achieved with a VLT of over 30%, a PCE of 12.5%, an IRR of over 90%, and a CRI of over 80. Furthermore, higher PCE of over 14% and IRR of over 95% can also be achieved, demonstrating the tunability of these photovoltaic properties. These figures highlight the exceptional performance of specialized ST-OPVs for window applications, demonstrating their dual function of generating electricity and energy saving. Additionally, simulations show that replacing traditional heat insulation films with the ST-OPVs can reduce annual energy demand by up to 60%, using Hong Kong as an example, underscoring their significant potential in sustainable building-integrated photovoltaic (BIPV) applications.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"17 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404129","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating semitransparent organic photovoltaics (ST-OPVs) into building structures is a promising technology that serves aesthetic purposes while retaining window functionality, and it also facilitates solar energy harvesting and heat insulation. However, balancing power conversion efficiency (PCE), visible light transmittance (VLT), infrared radiation rejection (IRR), and color rendering index (CRI) for window applications remains a significant challenge. In this study, ST-OPVs are developed that feature innovative near-infrared-absorbing materials. These devices are further coupled with an optical layer optimized through high-throughput optical modeling to fine-tune and enhance the different properties of the ST-OPVs. Specifically, ST-OPVs are achieved with a VLT of over 30%, a PCE of 12.5%, an IRR of over 90%, and a CRI of over 80. Furthermore, higher PCE of over 14% and IRR of over 95% can also be achieved, demonstrating the tunability of these photovoltaic properties. These figures highlight the exceptional performance of specialized ST-OPVs for window applications, demonstrating their dual function of generating electricity and energy saving. Additionally, simulations show that replacing traditional heat insulation films with the ST-OPVs can reduce annual energy demand by up to 60%, using Hong Kong as an example, underscoring their significant potential in sustainable building-integrated photovoltaic (BIPV) applications.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.