Fe(III)-Aided Novosphingobium sp. ES2–1 Regulates Molecular Mechanisms of 17β-Estradiol Biodegradation

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Shunyao Li, Yiru Wang, Kai Sun, Yuxin Li, Chao Lu, Yanzheng Gao
{"title":"Fe(III)-Aided Novosphingobium sp. ES2–1 Regulates Molecular Mechanisms of 17β-Estradiol Biodegradation","authors":"Shunyao Li, Yiru Wang, Kai Sun, Yuxin Li, Chao Lu, Yanzheng Gao","doi":"10.1021/acs.est.4c08818","DOIUrl":null,"url":null,"abstract":"17β-estradiol (E2) is one of the strongest environmental estrogens threatening wildlife and human health globally. Microbial degradation is an alternative strategy to remediate E2-contaminated sites and may be regulated by ubiquitous Fe(III) in eco-environments. We have previously obtained a high-efficiency E2 degrader, <i>Novosphingobium</i> sp. ES2–1, and investigated its metabolic pathway in connection with monooxygenase EstO1-induced ring-B opening; however, the molecular mechanisms of ring-A cleavage in E2 are sorely lacking, especially under Fe(III)-aided regulation. Here, an extradiol dioxygenase EstN1 from strain ES2–1 involved in the ring-A cleavage of E2 was reported. It catalyzed the 4,5-<i>seco</i> reaction of 4-hydroxyestrone (4-OH-E1, a key E2-oxidized intermediate) with the support of the electron transport chain consisting of ferredoxin EstN2 and ferredoxin reductase EstN3, resulting in a ring-A <i>meta-</i>cleaved product. Interestingly, Fe(III)-assisted strain ES2–1 consolidated the opening of rings A and B in E2 by reinforcing the expression of <i>estO1</i> and <i>estN1</i> genes, consequently enhancing E2 metabolism. Compared to Fe(III) starvation, the biodegradation half-life of E2 was sharply reduced from 1.35 to 0.59 d after Fe(III) supplementation. Simultaneously, the transcription of <i>estO1</i> and <i>estN1</i> genes increased clearly from 4.3 to 47.5 times and 6.6 to 246.8 times after Fe(III) induction, respectively, accompanied by remarkable improvement in the abundance of ring-A/B cleavage products and their pyridine derivatives. These findings highlight the significance of Fe(III) in regulating the microbial remediation of environmental estrogens at the molecular level.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"224 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08818","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

17β-estradiol (E2) is one of the strongest environmental estrogens threatening wildlife and human health globally. Microbial degradation is an alternative strategy to remediate E2-contaminated sites and may be regulated by ubiquitous Fe(III) in eco-environments. We have previously obtained a high-efficiency E2 degrader, Novosphingobium sp. ES2–1, and investigated its metabolic pathway in connection with monooxygenase EstO1-induced ring-B opening; however, the molecular mechanisms of ring-A cleavage in E2 are sorely lacking, especially under Fe(III)-aided regulation. Here, an extradiol dioxygenase EstN1 from strain ES2–1 involved in the ring-A cleavage of E2 was reported. It catalyzed the 4,5-seco reaction of 4-hydroxyestrone (4-OH-E1, a key E2-oxidized intermediate) with the support of the electron transport chain consisting of ferredoxin EstN2 and ferredoxin reductase EstN3, resulting in a ring-A meta-cleaved product. Interestingly, Fe(III)-assisted strain ES2–1 consolidated the opening of rings A and B in E2 by reinforcing the expression of estO1 and estN1 genes, consequently enhancing E2 metabolism. Compared to Fe(III) starvation, the biodegradation half-life of E2 was sharply reduced from 1.35 to 0.59 d after Fe(III) supplementation. Simultaneously, the transcription of estO1 and estN1 genes increased clearly from 4.3 to 47.5 times and 6.6 to 246.8 times after Fe(III) induction, respectively, accompanied by remarkable improvement in the abundance of ring-A/B cleavage products and their pyridine derivatives. These findings highlight the significance of Fe(III) in regulating the microbial remediation of environmental estrogens at the molecular level.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信