{"title":"Improve the projection of East China summer precipitation with emergent constraints","authors":"Huanhuan Zhu, Zhihong Jiang, Laurent Li, Wei Li, Sheng Jiang","doi":"10.1038/s41612-024-00863-3","DOIUrl":null,"url":null,"abstract":"Under global warming, summer precipitation over East China was projected to increase by current state-of-the-art climate models, but a large inter-model spread exists. Here we try to reduce the projection uncertainty by imposing constraints. Our procedure consists of first decomposing the projected future precipitation into inter-model principal components. The two leading modes (region-wide uniform monopole and north-south dipole, accounting for 55% of variability), by emergent constraints, are then linked to the simulation of historical precipitation in the northwest Pacific and the tropical Pacific (constraining areas). This allows us to reduce the uncertainties by 23% and obtain a smaller increase of projected precipitation in East China, relative to previous multi-model ensemble projections. Quasi-uniform increases, although weak, are obtained for the first mode, while the second mode shows a contrast pattern with a decrease in the south and an increase in the north, which both contribute to the spatial structure of constrainted projection. It is also shown that the emergent relations of both modes are physically consistent, with an enhancement of future zonal land-sea thermal contrast and a La Niña-like pattern, respectively. The use of emergent constraints inspires more confidence in the future regional precipitation projection and helps policymakers and stakeholders adjust their management policies.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-9"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00863-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00863-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Under global warming, summer precipitation over East China was projected to increase by current state-of-the-art climate models, but a large inter-model spread exists. Here we try to reduce the projection uncertainty by imposing constraints. Our procedure consists of first decomposing the projected future precipitation into inter-model principal components. The two leading modes (region-wide uniform monopole and north-south dipole, accounting for 55% of variability), by emergent constraints, are then linked to the simulation of historical precipitation in the northwest Pacific and the tropical Pacific (constraining areas). This allows us to reduce the uncertainties by 23% and obtain a smaller increase of projected precipitation in East China, relative to previous multi-model ensemble projections. Quasi-uniform increases, although weak, are obtained for the first mode, while the second mode shows a contrast pattern with a decrease in the south and an increase in the north, which both contribute to the spatial structure of constrainted projection. It is also shown that the emergent relations of both modes are physically consistent, with an enhancement of future zonal land-sea thermal contrast and a La Niña-like pattern, respectively. The use of emergent constraints inspires more confidence in the future regional precipitation projection and helps policymakers and stakeholders adjust their management policies.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.