Improve the projection of East China summer precipitation with emergent constraints

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Huanhuan Zhu, Zhihong Jiang, Laurent Li, Wei Li, Sheng Jiang
{"title":"Improve the projection of East China summer precipitation with emergent constraints","authors":"Huanhuan Zhu, Zhihong Jiang, Laurent Li, Wei Li, Sheng Jiang","doi":"10.1038/s41612-024-00863-3","DOIUrl":null,"url":null,"abstract":"Under global warming, summer precipitation over East China was projected to increase by current state-of-the-art climate models, but a large inter-model spread exists. Here we try to reduce the projection uncertainty by imposing constraints. Our procedure consists of first decomposing the projected future precipitation into inter-model principal components. The two leading modes (region-wide uniform monopole and north-south dipole, accounting for 55% of variability), by emergent constraints, are then linked to the simulation of historical precipitation in the northwest Pacific and the tropical Pacific (constraining areas). This allows us to reduce the uncertainties by 23% and obtain a smaller increase of projected precipitation in East China, relative to previous multi-model ensemble projections. Quasi-uniform increases, although weak, are obtained for the first mode, while the second mode shows a contrast pattern with a decrease in the south and an increase in the north, which both contribute to the spatial structure of constrainted projection. It is also shown that the emergent relations of both modes are physically consistent, with an enhancement of future zonal land-sea thermal contrast and a La Niña-like pattern, respectively. The use of emergent constraints inspires more confidence in the future regional precipitation projection and helps policymakers and stakeholders adjust their management policies.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-9"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00863-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00863-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Under global warming, summer precipitation over East China was projected to increase by current state-of-the-art climate models, but a large inter-model spread exists. Here we try to reduce the projection uncertainty by imposing constraints. Our procedure consists of first decomposing the projected future precipitation into inter-model principal components. The two leading modes (region-wide uniform monopole and north-south dipole, accounting for 55% of variability), by emergent constraints, are then linked to the simulation of historical precipitation in the northwest Pacific and the tropical Pacific (constraining areas). This allows us to reduce the uncertainties by 23% and obtain a smaller increase of projected precipitation in East China, relative to previous multi-model ensemble projections. Quasi-uniform increases, although weak, are obtained for the first mode, while the second mode shows a contrast pattern with a decrease in the south and an increase in the north, which both contribute to the spatial structure of constrainted projection. It is also shown that the emergent relations of both modes are physically consistent, with an enhancement of future zonal land-sea thermal contrast and a La Niña-like pattern, respectively. The use of emergent constraints inspires more confidence in the future regional precipitation projection and helps policymakers and stakeholders adjust their management policies.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信