Xiao Chen, Jialin Wang, Feifei Pan, Binxiang Huang, Pengshuai Bi, Na Huang, Riping Gao, Jingyu Men, Fangxiao Zhang, Zhanrui Huang, Buju Long, Ju Liang, Zhihua Pan
{"title":"Summer atmospheric drying could contribute more to soil moisture change than spring vegetation greening","authors":"Xiao Chen, Jialin Wang, Feifei Pan, Binxiang Huang, Pengshuai Bi, Na Huang, Riping Gao, Jingyu Men, Fangxiao Zhang, Zhanrui Huang, Buju Long, Ju Liang, Zhihua Pan","doi":"10.1038/s41612-024-00844-6","DOIUrl":null,"url":null,"abstract":"Widespread spring vegetation greening (inferred by LAI) in the Northern Hemisphere leads to additional summer soil moisture (SM) deficits through increasing transpiration. Meanwhile, vapor pressure deficit (VPD) has also been rising, which can increase atmospheric evaporative demand. However, the extent and magnitude of influence of these two factors on SM changes have not been elucidated. Here, based on the state-of-the-art reanalysis and remote sensing data, we use three statistical methods to quantify the contributions of spring LAI and summer VPD to summer SM deficit. The results show that summer VPD contributes more to SM change than spring LAI in the southwestern and northern regions of North America, northeastern Europe, and central and southeastern Asia, covering 13.4% of the vegetated areas despite of the certain influence of spring vegetation greening on summer soil drying. The results are of great significance for climate change adaptation and the enhancement of surface water management.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00844-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00844-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Widespread spring vegetation greening (inferred by LAI) in the Northern Hemisphere leads to additional summer soil moisture (SM) deficits through increasing transpiration. Meanwhile, vapor pressure deficit (VPD) has also been rising, which can increase atmospheric evaporative demand. However, the extent and magnitude of influence of these two factors on SM changes have not been elucidated. Here, based on the state-of-the-art reanalysis and remote sensing data, we use three statistical methods to quantify the contributions of spring LAI and summer VPD to summer SM deficit. The results show that summer VPD contributes more to SM change than spring LAI in the southwestern and northern regions of North America, northeastern Europe, and central and southeastern Asia, covering 13.4% of the vegetated areas despite of the certain influence of spring vegetation greening on summer soil drying. The results are of great significance for climate change adaptation and the enhancement of surface water management.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.