Ye Mu, Charles Jones, Leila M. V. Carvalho, Lulin Xue, Changhai Liu, Qinghua Ding
{"title":"Pacific decadal oscillation and ENSO forcings of northerly low-level jets in South America","authors":"Ye Mu, Charles Jones, Leila M. V. Carvalho, Lulin Xue, Changhai Liu, Qinghua Ding","doi":"10.1038/s41612-024-00852-6","DOIUrl":null,"url":null,"abstract":"The hydrological cycle in South America during austral summer, including extreme precipitation and floods, is significantly influenced by northerly low-level jets (LLJs) along the eastern Andes. These synoptic weather events have been associated with three different types of LLJs (Central, Northern, and Andes) and are sensitive to remote large-scale forcings. This study investigates how tropical forcings related to El Niño/Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) regulate the duration and frequency of each LLJ type and their impacts on extreme precipitation. Our analysis reveals that ENSO and PDO are important in driving the variability of LLJs over the past 65 years. Specifically, the Central LLJ type is more prevalent during El Niño and Warm/Neutral PDO phases, leading to heightened extreme precipitation in southern South America. Conversely, La Niña years during Cold PDO phases tend to favor the Northern and Andes LLJs, which are associated with increased precipitation extremes in the western Amazon and southeastern South America. Central and Andes LLJs tend to persist longer during these favored conditions, causing more pronounced precipitation events in the areas under their influence. This study enhances our understanding of the influence of large-scale atmospheric forcings on the regional precipitation dynamics in South America.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-12"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00852-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00852-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrological cycle in South America during austral summer, including extreme precipitation and floods, is significantly influenced by northerly low-level jets (LLJs) along the eastern Andes. These synoptic weather events have been associated with three different types of LLJs (Central, Northern, and Andes) and are sensitive to remote large-scale forcings. This study investigates how tropical forcings related to El Niño/Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) regulate the duration and frequency of each LLJ type and their impacts on extreme precipitation. Our analysis reveals that ENSO and PDO are important in driving the variability of LLJs over the past 65 years. Specifically, the Central LLJ type is more prevalent during El Niño and Warm/Neutral PDO phases, leading to heightened extreme precipitation in southern South America. Conversely, La Niña years during Cold PDO phases tend to favor the Northern and Andes LLJs, which are associated with increased precipitation extremes in the western Amazon and southeastern South America. Central and Andes LLJs tend to persist longer during these favored conditions, causing more pronounced precipitation events in the areas under their influence. This study enhances our understanding of the influence of large-scale atmospheric forcings on the regional precipitation dynamics in South America.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.