Yanhui Li, Yunpeng Tao, Wenying Xu, Han Wu, Guangjing Li, Lin Yue, Jiangjiang Gu, Fangjun Li, Honghong Wu, Juan Pablo Giraldo, Zhaohu Li
{"title":"Mn3O4 nanoparticles maintain ROS homeostasis to modulate stomatal aperture to improve cotton drought tolerance","authors":"Yanhui Li, Yunpeng Tao, Wenying Xu, Han Wu, Guangjing Li, Lin Yue, Jiangjiang Gu, Fangjun Li, Honghong Wu, Juan Pablo Giraldo, Zhaohu Li","doi":"10.1039/d4en00963k","DOIUrl":null,"url":null,"abstract":"Drought is a global issue causing severe reductions in crop yields. Use of nanobiotechnology to increase plant resistance to drought is widely reported. However, the mechanisms underlying nanomaterial improvement of crop drought tolerance are not well understood. Herein, we reported poly acrylic acid coated manganese oxide (Mn3O4) nanoparticles (PMO, 5.43 nm, -31.6 mV) increase cotton fresh weight (74.9%) under drought stress relative to controls by catalytically scavenging ROS and modulating stomatal aperture. PMO treated cotton leaves showed significantly lower ROS levels (60-70%) determined by confocal microscopy, biochemical and histochemical staining analysis. Also, plants exposed to PMO experienced less oxidative damage than controls under drought, as indicated by their lower malondialdehyde (MDA) content (2.02 ± 0.15 μmol/L vs 3.25 ± 0.27 μmol/L) and electrolyte leakage rate (31.13% ± 5.51 vs 64.83% ± 4.29). PMO treated cotton plants also maintained stomatal aperture and had higher photosynthetic performance (160%) under drought stress. Furthermore, we set up a portable monitoring system with low cost which can allow the real-time imaging of stomatal aperture and chlorophyll fluorescence in plants treated with nanomaterials. Overall, our results suggested that PMO could be a biocompatible and scalable tool for improving crop drought tolerance.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"16 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00963k","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is a global issue causing severe reductions in crop yields. Use of nanobiotechnology to increase plant resistance to drought is widely reported. However, the mechanisms underlying nanomaterial improvement of crop drought tolerance are not well understood. Herein, we reported poly acrylic acid coated manganese oxide (Mn3O4) nanoparticles (PMO, 5.43 nm, -31.6 mV) increase cotton fresh weight (74.9%) under drought stress relative to controls by catalytically scavenging ROS and modulating stomatal aperture. PMO treated cotton leaves showed significantly lower ROS levels (60-70%) determined by confocal microscopy, biochemical and histochemical staining analysis. Also, plants exposed to PMO experienced less oxidative damage than controls under drought, as indicated by their lower malondialdehyde (MDA) content (2.02 ± 0.15 μmol/L vs 3.25 ± 0.27 μmol/L) and electrolyte leakage rate (31.13% ± 5.51 vs 64.83% ± 4.29). PMO treated cotton plants also maintained stomatal aperture and had higher photosynthetic performance (160%) under drought stress. Furthermore, we set up a portable monitoring system with low cost which can allow the real-time imaging of stomatal aperture and chlorophyll fluorescence in plants treated with nanomaterials. Overall, our results suggested that PMO could be a biocompatible and scalable tool for improving crop drought tolerance.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis