{"title":"Piezotronic Strain Sensor with Uniform and Switchable Sensitivity by Conductivity Transformation","authors":"Fobao Huang, Yong Chao, Qingyuan Yang, Minjiang Dan, Qiao Chen, Gongwei Hu, Wei Huang","doi":"10.1016/j.nanoen.2024.110535","DOIUrl":null,"url":null,"abstract":"Piezotronic strain sensors that convert mechanical deformation into electrical signals are becoming increasingly important in artificial intelligence, human-machine interfaces, and robotic technologies. These applications require piezotronic sensor with the integration of high-sensitivity, high-stability, and versatile-functionality, which are limited by the single conductivity mechanism. In this study, we propose a piezotronic strain sensor with uniform and switchable sensitivity in a short channel field effect junction.The strain-induced piezo-potential can be used to switch the conductivity between Schottky and Ohmic regime, leading to an exponential (linear) piezotronic modulation in Schottky (Ohmic) conductivity elucidated by Fermi occupation theory. Local gauge factor reaches a high value of 1330 in Schottky conductivity and a low value of 320 in Ohmic regime, yielding a higher ratio of 4.2. The stable conductivity makes these high and low sensitivity uniform over a wide strain range. This study gives a deep insight into the correlation of strain-sensing performance and conductive mechanism in piezotronic sensors, and offers a new avenue to develop multifunctional and high-sensitivity sensors.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"80 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110535","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Piezotronic strain sensors that convert mechanical deformation into electrical signals are becoming increasingly important in artificial intelligence, human-machine interfaces, and robotic technologies. These applications require piezotronic sensor with the integration of high-sensitivity, high-stability, and versatile-functionality, which are limited by the single conductivity mechanism. In this study, we propose a piezotronic strain sensor with uniform and switchable sensitivity in a short channel field effect junction.The strain-induced piezo-potential can be used to switch the conductivity between Schottky and Ohmic regime, leading to an exponential (linear) piezotronic modulation in Schottky (Ohmic) conductivity elucidated by Fermi occupation theory. Local gauge factor reaches a high value of 1330 in Schottky conductivity and a low value of 320 in Ohmic regime, yielding a higher ratio of 4.2. The stable conductivity makes these high and low sensitivity uniform over a wide strain range. This study gives a deep insight into the correlation of strain-sensing performance and conductive mechanism in piezotronic sensors, and offers a new avenue to develop multifunctional and high-sensitivity sensors.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.