Sabin Neupane, Deng-Bing Li, Manoj Kumar Jamarkattel, Abasi Abudulimu, Chun-Sheng Jiang, Sandip S. Bista, Alisha Adhikari, Sanjeeb Budhathoki, Hamim Sharif, Kiran Lamichhane, Tyler Brau, Adam B. Phillips, Ambalanath Shan, Randall J. Ellingson, Michael J. Heben, Yanfa Yan
{"title":"Evaporated CdSe for Efficient Polycrystalline CdSeTe Thin-Film Solar Cells","authors":"Sabin Neupane, Deng-Bing Li, Manoj Kumar Jamarkattel, Abasi Abudulimu, Chun-Sheng Jiang, Sandip S. Bista, Alisha Adhikari, Sanjeeb Budhathoki, Hamim Sharif, Kiran Lamichhane, Tyler Brau, Adam B. Phillips, Ambalanath Shan, Randall J. Ellingson, Michael J. Heben, Yanfa Yan","doi":"10.1021/acsenergylett.4c02874","DOIUrl":null,"url":null,"abstract":"Recent progress has shown that alloying cadmium telluride (CdTe) with cadmium selenide (CdSe) to create a CdSe<sub><i>x</i></sub>Te<sub>1–<i>x</i></sub> (CdSeTe) gradient region can significantly boost the performance of polycrystalline CdSeTe thin-film solar cells. However, improper CdSeTe alloying might introduce problematic band alignment and deleterious voids at the front interface, limiting the benefit maximization of this technique. Here, we show that the CdSe layers deposited by thermal evaporation result in CdSeTe cells with a higher performance than the sputtered CdSe. This is because evaporated CdSe can avoid the formation of voids at the front interface, producing improved front junction quality with suppressed front junction nonradiative recombination. The champion cell using evaporated CdSe demonstrated a power conversion efficiency (PCE) of 19.7%, much higher than 18.1% in the cell using sputtered CdSe.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"17 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02874","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent progress has shown that alloying cadmium telluride (CdTe) with cadmium selenide (CdSe) to create a CdSexTe1–x (CdSeTe) gradient region can significantly boost the performance of polycrystalline CdSeTe thin-film solar cells. However, improper CdSeTe alloying might introduce problematic band alignment and deleterious voids at the front interface, limiting the benefit maximization of this technique. Here, we show that the CdSe layers deposited by thermal evaporation result in CdSeTe cells with a higher performance than the sputtered CdSe. This is because evaporated CdSe can avoid the formation of voids at the front interface, producing improved front junction quality with suppressed front junction nonradiative recombination. The champion cell using evaporated CdSe demonstrated a power conversion efficiency (PCE) of 19.7%, much higher than 18.1% in the cell using sputtered CdSe.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.