Dominance of 2 Minute Oscillations near the Alfvén Surface

Zesen Huang, 泽森 黄, Marco Velli, Chen Shi, 辰 时, Yingjie Zhu, 英杰 朱, B. D. G. Chandran, Trevor Bowen, Victor Réville, Jia Huang, 佳 黄, Chuanpeng Hou, 传鹏 侯, Nikos Sioulas, Mingzhe Liu, 明哲 刘, Marc Pulupa, Sheng Huang, 胜 黄 and Stuart D. Bale
{"title":"Dominance of 2 Minute Oscillations near the Alfvén Surface","authors":"Zesen Huang, 泽森 黄, Marco Velli, Chen Shi, 辰 时, Yingjie Zhu, 英杰 朱, B. D. G. Chandran, Trevor Bowen, Victor Réville, Jia Huang, 佳 黄, Chuanpeng Hou, 传鹏 侯, Nikos Sioulas, Mingzhe Liu, 明哲 刘, Marc Pulupa, Sheng Huang, 胜 黄 and Stuart D. Bale","doi":"10.3847/2041-8213/ad9271","DOIUrl":null,"url":null,"abstract":"Alfvén waves, considered one of the primary candidates for heating and accelerating the fast solar wind, are ubiquitous in spacecraft observations, yet their origin remains elusive. In this study, we analyze data from the first 19 encounters of the Parker Solar Probe and report the dominance of 2 minute oscillations near the Alfvén surface. The frequency-rectified trace magnetic power spectral density (PSD) of these oscillations indicates that the fluctuation energy is concentrated around 2 minutes for the “youngest” solar wind. Further analysis using wavelet spectrograms reveals that these oscillations primarily consist of outward-propagating, spherically polarized Alfvén wave bursts. Through Doppler analysis, we show that the wave frequency observed in the spacecraft frame can be mapped directly to the launch frequency at the base of the corona, where previous studies have identified a distinct peak around 2 minutes (~8 mHz) in the spectrum of swaying motions of coronal structures observed by the Solar Dynamics Observatory Atmospheric Imaging Assembly. These findings strongly suggest that the Alfvén waves originate from the solar atmosphere. Furthermore, statistical analysis of the PSD deformation beyond the Alfvén surface supports the idea of dynamic formation of the otherwise absent 1/f range in the solar wind turbulence spectrum.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad9271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alfvén waves, considered one of the primary candidates for heating and accelerating the fast solar wind, are ubiquitous in spacecraft observations, yet their origin remains elusive. In this study, we analyze data from the first 19 encounters of the Parker Solar Probe and report the dominance of 2 minute oscillations near the Alfvén surface. The frequency-rectified trace magnetic power spectral density (PSD) of these oscillations indicates that the fluctuation energy is concentrated around 2 minutes for the “youngest” solar wind. Further analysis using wavelet spectrograms reveals that these oscillations primarily consist of outward-propagating, spherically polarized Alfvén wave bursts. Through Doppler analysis, we show that the wave frequency observed in the spacecraft frame can be mapped directly to the launch frequency at the base of the corona, where previous studies have identified a distinct peak around 2 minutes (~8 mHz) in the spectrum of swaying motions of coronal structures observed by the Solar Dynamics Observatory Atmospheric Imaging Assembly. These findings strongly suggest that the Alfvén waves originate from the solar atmosphere. Furthermore, statistical analysis of the PSD deformation beyond the Alfvén surface supports the idea of dynamic formation of the otherwise absent 1/f range in the solar wind turbulence spectrum.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信