Scalable Photonic Nose Development through Corona Phase Molecular Recognition

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Minyeong Yoon, Seyoung Shin, Seungju Lee, Joohoon Kang, Xun Gong, Soo-Yeon Cho
{"title":"Scalable Photonic Nose Development through Corona Phase Molecular Recognition","authors":"Minyeong Yoon, Seyoung Shin, Seungju Lee, Joohoon Kang, Xun Gong, Soo-Yeon Cho","doi":"10.1021/acssensors.4c02327","DOIUrl":null,"url":null,"abstract":"Breath sensors promise early disease diagnosis through noninvasive, rapid analysis, but have struggled to reach clinical use due to challenges in scalability and multivariate data extraction. The current breath sensor design necessitates various channel materials and surface functionalization methods, which delays the process. Additionally, the limited options for channel materials that provide optimum sensitivity and selectivity further restrict the array size to a maximum of only 10 to 20 channels. To address these limitations, we propose a breath sensing array design process based on Corona Phase Molecular Recognition (CoPhMoRe), which enables the creation of an expansive library of nanoparticle interfaces and broad fingerprints for multiple analytes in the breath. Although CoPhMoRe has predominantly been utilized for liquid-phase sensing, its recent application to gas-phase sensing has shown significant potential for breath sensing. We introduce the recent demonstrations in the field and present the concept of a CoPhMoRe-based photonic-nose sensor array, leveraging fluorescent nanomaterials such as near-infrared single-walled carbon nanotubes. Additionally, we identified four critical milestones for translating CoPhMoRe into breath sensors for practical clinical applications.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"15 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02327","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breath sensors promise early disease diagnosis through noninvasive, rapid analysis, but have struggled to reach clinical use due to challenges in scalability and multivariate data extraction. The current breath sensor design necessitates various channel materials and surface functionalization methods, which delays the process. Additionally, the limited options for channel materials that provide optimum sensitivity and selectivity further restrict the array size to a maximum of only 10 to 20 channels. To address these limitations, we propose a breath sensing array design process based on Corona Phase Molecular Recognition (CoPhMoRe), which enables the creation of an expansive library of nanoparticle interfaces and broad fingerprints for multiple analytes in the breath. Although CoPhMoRe has predominantly been utilized for liquid-phase sensing, its recent application to gas-phase sensing has shown significant potential for breath sensing. We introduce the recent demonstrations in the field and present the concept of a CoPhMoRe-based photonic-nose sensor array, leveraging fluorescent nanomaterials such as near-infrared single-walled carbon nanotubes. Additionally, we identified four critical milestones for translating CoPhMoRe into breath sensors for practical clinical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信