Elgar Kanhere, Théo Calais, Snehal Jain, Aby Raj Plamootil Mathai, Aaron Chooi, Thileepan Stalin, Vincent Sebastian Joseph, Pablo Valdivia y Alvarado
{"title":"Upgrading and extending the life cycle of soft robots with in situ free-form liquid three-dimensional printing","authors":"Elgar Kanhere, Théo Calais, Snehal Jain, Aby Raj Plamootil Mathai, Aaron Chooi, Thileepan Stalin, Vincent Sebastian Joseph, Pablo Valdivia y Alvarado","doi":"10.1126/scirobotics.adn4542","DOIUrl":null,"url":null,"abstract":"Soft robotics hardware, with numerous applications ranging from health care to exploration of unstructured environments, suffers from limited life cycles, which lead to waste generation and poor sustainability. Soft robots combine soft or hybrid components via complex assembly and disassembly workflows, which complicate the repair of broken components, hinder upgradability, and ultimately reduce their life spans. In this work, an advanced extrusion-based additive manufacturing process, in situ free-form liquid three-dimensional printing (iFL3DP), was developed to facilitate functional upgrades and repairs in soft robots. A yield-stress hydrogel—a type of material that can maintain its shape until sufficient stress is applied—was first printed directly onto the robot surface, serving as a support for printing new components. This technique enabled the fabrication of advanced components with seamless integration onto already assembled robots. These components could combine multiple materials with intricate geometries, including overhangs and high–aspect ratio shapes, that are considerably challenging to manufacture and integrate via traditional methods such as casting. This approach was successfully applied to upgrade an existing soft robot by adding three advanced functionalities: whisker-like sensors for tactile feedback, a grasping mechanism, and a multifunctional passive whisker array. This study showcases the easy repairability of features, new and old, substantially extending the robot’s life span. This workflow has potential to enhance the sustainable development of soft robots.","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"77 1","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1126/scirobotics.adn4542","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Soft robotics hardware, with numerous applications ranging from health care to exploration of unstructured environments, suffers from limited life cycles, which lead to waste generation and poor sustainability. Soft robots combine soft or hybrid components via complex assembly and disassembly workflows, which complicate the repair of broken components, hinder upgradability, and ultimately reduce their life spans. In this work, an advanced extrusion-based additive manufacturing process, in situ free-form liquid three-dimensional printing (iFL3DP), was developed to facilitate functional upgrades and repairs in soft robots. A yield-stress hydrogel—a type of material that can maintain its shape until sufficient stress is applied—was first printed directly onto the robot surface, serving as a support for printing new components. This technique enabled the fabrication of advanced components with seamless integration onto already assembled robots. These components could combine multiple materials with intricate geometries, including overhangs and high–aspect ratio shapes, that are considerably challenging to manufacture and integrate via traditional methods such as casting. This approach was successfully applied to upgrade an existing soft robot by adding three advanced functionalities: whisker-like sensors for tactile feedback, a grasping mechanism, and a multifunctional passive whisker array. This study showcases the easy repairability of features, new and old, substantially extending the robot’s life span. This workflow has potential to enhance the sustainable development of soft robots.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.