{"title":"Super-Hölder vectors and the field of norms","authors":"Laurent Berger, Sandra Rozensztajn","doi":"10.2140/ant.2025.19.195","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> be a field of characteristic <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>. In a previous paper of ours, we defined and studied super-Hölder vectors in certain <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math>-linear representations of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></math>. In the present paper, we define and study super-Hölder vectors in certain <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math>-linear representations of a general <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic Lie group. We then consider certain <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic Lie extensions <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>∕</mo><mi>K</mi></math> of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>K</mi></math>, and compute the super-Hölder vectors in the tilt of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub></math>. We show that these super-Hölder vectors are the perfection of the field of norms of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow></msub><mo>∕</mo><mi>K</mi></math>. By specializing to the case of a Lubin–Tate extension, we are able to recover <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mi>Y</mi>\n<mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math> inside the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Y</mi> </math>-adic completion of its perfection, seen as a valued <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math>-vector space endowed with the action of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi mathvariant=\"bold-script\">𝒪</mi></mrow><mrow><mi>K</mi></mrow><mrow><mo>×</mo></mrow></msubsup></math> given by the endomorphisms of the corresponding Lubin–Tate group. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"20 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.195","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a field of characteristic . In a previous paper of ours, we defined and studied super-Hölder vectors in certain -linear representations of . In the present paper, we define and study super-Hölder vectors in certain -linear representations of a general -adic Lie group. We then consider certain -adic Lie extensions of a -adic field , and compute the super-Hölder vectors in the tilt of . We show that these super-Hölder vectors are the perfection of the field of norms of . By specializing to the case of a Lubin–Tate extension, we are able to recover inside the -adic completion of its perfection, seen as a valued -vector space endowed with the action of given by the endomorphisms of the corresponding Lubin–Tate group.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.