{"title":"Ranks of abelian varieties in cyclotomic twist families","authors":"Ari Shnidman, Ariel Weiss","doi":"10.2140/ant.2025.19.39","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> be an abelian variety over a number field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>, and suppose that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> embeds in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mover accent=\"true\"><mrow><mi>F</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub><mi>A</mi></math>, for some root of unity <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub></math> of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>=</mo> <msup><mrow><mn>3</mn></mrow><mrow><mi>m</mi></mrow></msup></math>. Assuming that the Galois action on the finite group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo stretchy=\"false\">[</mo><mn>1</mn>\n<mo>−</mo> <msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> is sufficiently reducible, we bound the average rank of the Mordell–Weil groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>F</mi><mo stretchy=\"false\">)</mo></math>, as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub></math> varies through the family of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>. Combining this result with the recently proved uniform Mordell–Lang conjecture, we prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math>, as well as in twist families of theta divisors of cyclic trigonal curves <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math>. Our main technical result is the determination of the average size of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn></math>-isogeny Selmer group in a family of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"262 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.39","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be an abelian variety over a number field , and suppose that embeds in , for some root of unity of order . Assuming that the Galois action on the finite group is sufficiently reducible, we bound the average rank of the Mordell–Weil groups , as varies through the family of -twists of . Combining this result with the recently proved uniform Mordell–Lang conjecture, we prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves , as well as in twist families of theta divisors of cyclic trigonal curves . Our main technical result is the determination of the average size of a -isogeny Selmer group in a family of -twists.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.