Ranks of abelian varieties in cyclotomic twist families

IF 0.9 1区 数学 Q2 MATHEMATICS
Ari Shnidman, Ariel Weiss
{"title":"Ranks of abelian varieties in cyclotomic twist families","authors":"Ari Shnidman, Ariel Weiss","doi":"10.2140/ant.2025.19.39","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math> be an abelian variety over a number field <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>F</mi></math>, and suppose that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo stretchy=\"false\">[</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> embeds in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi> End</mi><mo> ⁡<!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mover accent=\"true\"><mrow><mi>F</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow></msub><mi>A</mi></math>, for some root of unity <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub></math> of order <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>=</mo> <msup><mrow><mn>3</mn></mrow><mrow><mi>m</mi></mrow></msup></math>. Assuming that the Galois action on the finite group <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi><mo stretchy=\"false\">[</mo><mn>1</mn>\n<mo>−</mo> <msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">]</mo></math> is sufficiently reducible, we bound the average rank of the Mordell–Weil groups <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>F</mi><mo stretchy=\"false\">)</mo></math>, as <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>A</mi></mrow><mrow><mi>d</mi></mrow></msub></math> varies through the family of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>A</mi></math>. Combining this result with the recently proved uniform Mordell–Lang conjecture, we prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math>, as well as in twist families of theta divisors of cyclic trigonal curves <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup>\n<mo>=</mo>\n<mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math>. Our main technical result is the determination of the average size of a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3</mn></math>-isogeny Selmer group in a family of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math>-twists. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"262 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.39","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let A be an abelian variety over a number field F, and suppose that [ζn] embeds in End F¯A, for some root of unity ζn of order n = 3m. Assuming that the Galois action on the finite group A[1 ζn] is sufficiently reducible, we bound the average rank of the Mordell–Weil groups Ad(F), as Ad varies through the family of μ2n-twists of A. Combining this result with the recently proved uniform Mordell–Lang conjecture, we prove near-uniform bounds for the number of rational points in twist families of bicyclic trigonal curves y3 = f(x2), as well as in twist families of theta divisors of cyclic trigonal curves y3 = f(x). Our main technical result is the determination of the average size of a 3-isogeny Selmer group in a family of μ2n-twists.

旋回扭转科阿贝尔变种的行列
设A是数字域F上的一个阿贝尔变,并假设对于n阶的单位ζn = 3m的某个根,n [ζn]嵌入到End (F¯A)中。假设有限群A[1−ζn]上的伽罗瓦作用是充分可约的,我们对modell - weil群Ad(F)的平均秩进行了定界,当Ad在A的μ2n-扭转族中变化时,结合最近证明的一致modell - lang猜想,我们证明了双环三角曲线y3= F (x2)的扭转族中有理点个数的近似一致界,以及循环三角曲线y3= F (x)的θ因子扭转族中的有理点个数的近似一致界。我们的主要技术成果是确定μ2n-扭转家族中3-等基因Selmer基团的平均大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信