Vanishing results for the coherent cohomology of automorphic vector bundles over the Siegel variety in positive characteristic

IF 0.9 1区 数学 Q2 MATHEMATICS
Thibault Alexandre
{"title":"Vanishing results for the coherent cohomology of automorphic vector bundles over the Siegel variety in positive characteristic","authors":"Thibault Alexandre","doi":"10.2140/ant.2025.19.143","DOIUrl":null,"url":null,"abstract":"<p>We prove vanishing results for the coherent cohomology of the good reduction modulo <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math> of the Siegel modular variety with coefficients in some automorphic bundles. We show that for an automorphic bundle with highest weight <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>λ</mi></math> near the walls of the antidominant Weyl chamber, there is an integer <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>e</mi>\n<mo>≥</mo> <mn>0</mn></math> such that the cohomology is concentrated in degrees <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>e</mi><mo stretchy=\"false\">]</mo></math>. The accessible weights with our method are not necessarily regular and not necessarily <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-small. Since our method is technical, we also provide an algorithm written in SageMath that computes explicitly the vanishing results. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.143","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove vanishing results for the coherent cohomology of the good reduction modulo p of the Siegel modular variety with coefficients in some automorphic bundles. We show that for an automorphic bundle with highest weight λ near the walls of the antidominant Weyl chamber, there is an integer e 0 such that the cohomology is concentrated in degrees [0,e]. The accessible weights with our method are not necessarily regular and not necessarily p-small. Since our method is technical, we also provide an algorithm written in SageMath that computes explicitly the vanishing results.

自同构向量束在正特征上的相干上同调的消失结果
证明了在某些自同构束中带系数的Siegel模簇的好约化模p的相干上同调的消失结果。我们证明了在反优势Weyl室壁附近,对于具有最高质量λ的自同构束,存在一个整数e≥0,使得上同调集中在度[0,e]。我们方法的可达权不一定是规则的,也不一定是p-小的。由于我们的方法是技术性的,因此我们还提供了一个用SageMath编写的算法,该算法显式地计算消失的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信