Photodynamic Effects of Topical Photosensitizer, Photodithazine Using Micro-LED for Acne Bacteria Induced Inflammation.

Su Min Lee, Soo-Hyun Kim, Zun Kim, Jee-Bum Lee
{"title":"Photodynamic Effects of Topical Photosensitizer, Photodithazine Using Micro-LED for Acne Bacteria Induced Inflammation.","authors":"Su Min Lee, Soo-Hyun Kim, Zun Kim, Jee-Bum Lee","doi":"10.5021/ad.23.157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Photodynamic therapy (PDT) using topical photosensitizers has been widely used worldwide as a therapeutic modality for acne. However, there are no published reports on photodithazine PDT for acne treatment.</p><p><strong>Objective: </strong>We investigated the effectiveness of PDT with photodithazine and micro-LED treatment for acne bacteria-induced inflammation.</p><p><strong>Methods: </strong>We established an acne bacteria-induced inflammation model by injecting of <i>Cutibacterium acnes</i> into the backs of HR-1 mice. The mouse models were divided into seven groups for control and comparison. Topical photosensitizer (photodithazine) was administered to the mice, and then their acne lesions were exposed to a micro-light-emitting diode (micro-LED) source. The effectiveness of the treatment on acne lesions was evaluated through clinical findings and measurements of acne inflammation biomarkers using semi-quantitative reverse transcription polymerase chain reaction, and Western blot. Additionally, hematoxylin and eosin staining and immunohistochemical staining were employed to evaluate the changes in inflammatory cells and biomarkers in skin tissues.</p><p><strong>Results: </strong>Compared with the control groups treated with either LED or photosensitizer alone, the acne lesions were significantly reduced in severity and number after PDT. The mRNA and protein levels of biomarkers (interleukin [IL]-1α, IL-1β, tumor necrosis factor-α, Toll-like receptor 2, matrix metalloproteinase-2, and IL-8) exhibited variable decreases in the PDT group relative to the others. Moreover, there was a decline in inflammatory cells and biomarkers in skin specimens after PDT.</p><p><strong>Conclusion: </strong>This <i>in vivo</i> study demonstrated that PDT using photodithazine and micro-LED technology is effective against inflammation induced by acne bacteria.</p>","PeriodicalId":94298,"journal":{"name":"Annals of dermatology","volume":"36 6","pages":"329-340"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5021/ad.23.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Photodynamic therapy (PDT) using topical photosensitizers has been widely used worldwide as a therapeutic modality for acne. However, there are no published reports on photodithazine PDT for acne treatment.

Objective: We investigated the effectiveness of PDT with photodithazine and micro-LED treatment for acne bacteria-induced inflammation.

Methods: We established an acne bacteria-induced inflammation model by injecting of Cutibacterium acnes into the backs of HR-1 mice. The mouse models were divided into seven groups for control and comparison. Topical photosensitizer (photodithazine) was administered to the mice, and then their acne lesions were exposed to a micro-light-emitting diode (micro-LED) source. The effectiveness of the treatment on acne lesions was evaluated through clinical findings and measurements of acne inflammation biomarkers using semi-quantitative reverse transcription polymerase chain reaction, and Western blot. Additionally, hematoxylin and eosin staining and immunohistochemical staining were employed to evaluate the changes in inflammatory cells and biomarkers in skin tissues.

Results: Compared with the control groups treated with either LED or photosensitizer alone, the acne lesions were significantly reduced in severity and number after PDT. The mRNA and protein levels of biomarkers (interleukin [IL]-1α, IL-1β, tumor necrosis factor-α, Toll-like receptor 2, matrix metalloproteinase-2, and IL-8) exhibited variable decreases in the PDT group relative to the others. Moreover, there was a decline in inflammatory cells and biomarkers in skin specimens after PDT.

Conclusion: This in vivo study demonstrated that PDT using photodithazine and micro-LED technology is effective against inflammation induced by acne bacteria.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信