Strip electrodes: a novel, effective and minimally invasive therapeutic option for correcting DNS via electromechanical reshaping.

Mohamed Jameer Basha Jahankir, Harisharan Ramesh, Thilak Chakaravarthi, Ajay Agarwal, Amit Goyal, Gowri Manohari Balachander
{"title":"Strip electrodes: a novel, effective and minimally invasive therapeutic option for correcting DNS <i>via</i> electromechanical reshaping.","authors":"Mohamed Jameer Basha Jahankir, Harisharan Ramesh, Thilak Chakaravarthi, Ajay Agarwal, Amit Goyal, Gowri Manohari Balachander","doi":"10.1039/d4tb01306a","DOIUrl":null,"url":null,"abstract":"<p><p>Deviated nasal septum (DNS) is a common condition affecting nasal breathing, which is generally treated using septoplasty. However, this invasive surgical method carries potential risks of post-surgical complications. Alternatively, electromechanical reshaping (EMR) is a novel method that has evolved as a non-thermal, minimally invasive option to reshape the cartilage using mechanical pressure and direct current (DC) without significant tissue damage. However, the existing flat and needle electrodes tested in animal tissues have raised significant concerns due to their safety. Thus, herein, we aimed to develop a novel strip electrode configuration and optimize dosimetry to achieve efficient reshaping without compromising its safety. Electric field simulations showed that our novel 5-strip electrode configuration with a thickness of 0.5 mm achieved optimal electric field, requiring minimal current flow compared to flat electrodes. EMR was performed on <i>ex vivo</i> goat cartilage at various dosimetry groups to analyze four-day shape retention. The optimized strip electrode reshaped the <i>ex vivo</i> goat septal cartilage effectively at a dosimetry of 20 mA for 15 minutes, whereas the flat electrode needed 35 mA for 15 minutes. DMMB assay, ATR-FTIR spectroscopy, tensile testing, and histopathology analysis demonstrated reduced tissue damage while supporting increased efficiency and mechanical stability with the strip electrode configuration, emphasizing its safety. Thus, the optimized strip electrode-based EMR emerges as a viable non-invasive approach for reshaping the nasal septal cartilage, which can be used to treat DNS. Further <i>in vivo</i> studies are recommended to validate the long-term safety and efficacy of this technique.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01306a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deviated nasal septum (DNS) is a common condition affecting nasal breathing, which is generally treated using septoplasty. However, this invasive surgical method carries potential risks of post-surgical complications. Alternatively, electromechanical reshaping (EMR) is a novel method that has evolved as a non-thermal, minimally invasive option to reshape the cartilage using mechanical pressure and direct current (DC) without significant tissue damage. However, the existing flat and needle electrodes tested in animal tissues have raised significant concerns due to their safety. Thus, herein, we aimed to develop a novel strip electrode configuration and optimize dosimetry to achieve efficient reshaping without compromising its safety. Electric field simulations showed that our novel 5-strip electrode configuration with a thickness of 0.5 mm achieved optimal electric field, requiring minimal current flow compared to flat electrodes. EMR was performed on ex vivo goat cartilage at various dosimetry groups to analyze four-day shape retention. The optimized strip electrode reshaped the ex vivo goat septal cartilage effectively at a dosimetry of 20 mA for 15 minutes, whereas the flat electrode needed 35 mA for 15 minutes. DMMB assay, ATR-FTIR spectroscopy, tensile testing, and histopathology analysis demonstrated reduced tissue damage while supporting increased efficiency and mechanical stability with the strip electrode configuration, emphasizing its safety. Thus, the optimized strip electrode-based EMR emerges as a viable non-invasive approach for reshaping the nasal septal cartilage, which can be used to treat DNS. Further in vivo studies are recommended to validate the long-term safety and efficacy of this technique.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信