{"title":"Computed tomography-based pulmonary vasculature analysis of decreased lung perfusion after thoracic radiotherapy in patients with lung cancer.","authors":"Yu-Sen Huang, Jenny Ling-Yu Chen, Wei-Chun Ko, Yee-Fan Lee, Yeun-Chung Chang","doi":"10.1080/09553002.2024.2435316","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to quantitatively assess changes in lung perfusion after thoracic radiotherapy in lung cancer patients.</p><p><strong>Materials and methods: </strong>Patients underwent chest computed tomography (CT) for pulmonary vasculature analysis before radiotherapy and at 3 and 12 months after radiotherapy. The correlation between the percentage decrease in lung perfusion after radiotherapy and the delivered radiotherapy dose was analyzed.</p><p><strong>Results: </strong>The ipsilateral lung, where the primary tumor was located, received a significantly higher dose than the contralateral lung (mean dose: 22.9 Gy vs. 6.8 Gy). At 3 months, significant reductions in lung perfusion parameters were observed in the ipsilateral lung (total blood volume (TBV): 13.8%, blood volume in vessels with cross-sectional areas of ≤10 mm<sup>2</sup>: 12.6%, blood volume in vessels with cross-sectional areas of ≤5 mm<sup>2</sup>: 11.7%, subpleural vessel count: 21.1%, subpleural vessel area: 16.9%, and subpleural vessel density: 12.3%). Significant negative correlations between perfusion parameters and the radiation dose delivered to the ipsilateral lung were observed. For every 1-Gy increase in the mean dose for the ipsilateral lung, TBV decreased by 0.852% (<i>p</i> = .044), and for every 1% increase in the percentage of lung volume that received more than 20 Gy, TBV decreased by 0.402% (<i>p</i> = .048). The 3-year overall survival of the patients was 75%. No significant association between baseline perfusion parameters and survival was observed.</p><p><strong>Conclusions: </strong>Thoracic radiotherapy significantly reduced pulmonary perfusion, especially in the ipsilateral lung. The reduction in perfusion correlated with the radiation dose. These findings underscore the impact of radiation-induced damage on perfusion.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"35-43"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2435316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to quantitatively assess changes in lung perfusion after thoracic radiotherapy in lung cancer patients.
Materials and methods: Patients underwent chest computed tomography (CT) for pulmonary vasculature analysis before radiotherapy and at 3 and 12 months after radiotherapy. The correlation between the percentage decrease in lung perfusion after radiotherapy and the delivered radiotherapy dose was analyzed.
Results: The ipsilateral lung, where the primary tumor was located, received a significantly higher dose than the contralateral lung (mean dose: 22.9 Gy vs. 6.8 Gy). At 3 months, significant reductions in lung perfusion parameters were observed in the ipsilateral lung (total blood volume (TBV): 13.8%, blood volume in vessels with cross-sectional areas of ≤10 mm2: 12.6%, blood volume in vessels with cross-sectional areas of ≤5 mm2: 11.7%, subpleural vessel count: 21.1%, subpleural vessel area: 16.9%, and subpleural vessel density: 12.3%). Significant negative correlations between perfusion parameters and the radiation dose delivered to the ipsilateral lung were observed. For every 1-Gy increase in the mean dose for the ipsilateral lung, TBV decreased by 0.852% (p = .044), and for every 1% increase in the percentage of lung volume that received more than 20 Gy, TBV decreased by 0.402% (p = .048). The 3-year overall survival of the patients was 75%. No significant association between baseline perfusion parameters and survival was observed.
Conclusions: Thoracic radiotherapy significantly reduced pulmonary perfusion, especially in the ipsilateral lung. The reduction in perfusion correlated with the radiation dose. These findings underscore the impact of radiation-induced damage on perfusion.