A functional hydrogel dressing based on glycyrrhizic acid with low-swelling and moisturizing properties for enhancing infected wound repair.

Ji Wang, Wei Wang, Kejun Li, Yanhua Wu, Xiaoting Yang, Jiping Zhou, Zhijie Zhang, Yongjun Jiang
{"title":"A functional hydrogel dressing based on glycyrrhizic acid with low-swelling and moisturizing properties for enhancing infected wound repair.","authors":"Ji Wang, Wei Wang, Kejun Li, Yanhua Wu, Xiaoting Yang, Jiping Zhou, Zhijie Zhang, Yongjun Jiang","doi":"10.1039/d4tb01572j","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a challenging due to the presence of bacterial infection, excessive inflammation and angiogenesis disorders. While traditional therapies struggle, a functional hydrogel can effectively repair wounds. However, the use of hydrogels is limited due to their high swelling and excessive dehydration characteristics. Herein, an interpenetrating polymer network hydrogel (HGP@EGCG) based on hyaluronic acid methacrylate (HAMA), glycyrrhizic acid (GA), polyvinyl alcohol (PVA), epigallocatechin-3-gallate (EGCG), and glycerin/water binary solvent was developed by self-assembly, physical entanglement and chemical crosslinking for infected wound healing. GA forms a primary network through self-assembly induced by Zn<sup>2+</sup> and HAMA forms a more robust network structure through free radical polymerization as a rigid backbone, followed by the physical entanglement of PVA, which provides additional crosslinks within the network. The robust network structure conferred the HGP hydrogel with low swelling properties. HGP@EGCG hydrogels could adhere to the wound surface, exhibiting adequate tensile and compressive strength to withstand deformations induced by external forces. Then HGP@EGCG hydrogels with good moisture retention could facilitate the maintenance of wound hydration and prolong usage. Moreover, HGP@EGCG hydrogels could release the drug rapidly in an acidic environment and eliminate bacteria. The designed hydrogels demonstrated multifaceted functionality, including suitable adhesion, low swelling, good moisture retention, and efficient antibacterial properties. Both <i>in vitro</i> and <i>in vivo</i> investigations confirmed that HGP@EGCG hydrogels had good biocompatibility and promoted human umbilical vein endothelial cell migration and tube formation, which markedly expedited wound healing. Consequently, HGP@EGCG hydrogels present a broad spectrum of potential applications in the clinical treatment of infected wounds.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01572j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wound healing is a challenging due to the presence of bacterial infection, excessive inflammation and angiogenesis disorders. While traditional therapies struggle, a functional hydrogel can effectively repair wounds. However, the use of hydrogels is limited due to their high swelling and excessive dehydration characteristics. Herein, an interpenetrating polymer network hydrogel (HGP@EGCG) based on hyaluronic acid methacrylate (HAMA), glycyrrhizic acid (GA), polyvinyl alcohol (PVA), epigallocatechin-3-gallate (EGCG), and glycerin/water binary solvent was developed by self-assembly, physical entanglement and chemical crosslinking for infected wound healing. GA forms a primary network through self-assembly induced by Zn2+ and HAMA forms a more robust network structure through free radical polymerization as a rigid backbone, followed by the physical entanglement of PVA, which provides additional crosslinks within the network. The robust network structure conferred the HGP hydrogel with low swelling properties. HGP@EGCG hydrogels could adhere to the wound surface, exhibiting adequate tensile and compressive strength to withstand deformations induced by external forces. Then HGP@EGCG hydrogels with good moisture retention could facilitate the maintenance of wound hydration and prolong usage. Moreover, HGP@EGCG hydrogels could release the drug rapidly in an acidic environment and eliminate bacteria. The designed hydrogels demonstrated multifaceted functionality, including suitable adhesion, low swelling, good moisture retention, and efficient antibacterial properties. Both in vitro and in vivo investigations confirmed that HGP@EGCG hydrogels had good biocompatibility and promoted human umbilical vein endothelial cell migration and tube formation, which markedly expedited wound healing. Consequently, HGP@EGCG hydrogels present a broad spectrum of potential applications in the clinical treatment of infected wounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信