Bishav Bhattarai , Ananda Shankar Bhattacharjee , Felipe H. Coutinho , Hanyan Li , Sreeni Chadalavada , Ramesh Goel
{"title":"Bacteriophages carry auxiliary metabolic genes related to energy, sulfur and phosphorus metabolism during a harmful algal bloom in a freshwater lake","authors":"Bishav Bhattarai , Ananda Shankar Bhattacharjee , Felipe H. Coutinho , Hanyan Li , Sreeni Chadalavada , Ramesh Goel","doi":"10.1016/j.chemosphere.2024.143819","DOIUrl":null,"url":null,"abstract":"<div><div>Cyanophages play an important role in nutrient cycling in lakes since they can modulate the metabolism of cyanobacteria. A proper understanding of the impact of cyanophage infection on the metabolism and ecology of cyanobacteria is critical during a complete cycle of harmful algal bloom (HAB). The ecology of cyanophages in marine environments has been well-delineated, but cyanophages in freshwater lakes remain less studied. Here, we studied the diversity of cyanophages and their impact on host ecology and metabolism through the succession of HAB in Utah Lake, which is a shallow eutrophic freshwater lake, in 2019. We collected water samples at three different periods from two locations in freshwater Utah Lake. The three sampling periods represented the pre-bloom, peak-bloom, and post-bloom events. We observed that the Utah Lake virome was dominated by families <em>Myoviridae</em>, <em>Siphoviridae</em>, and <em>Podoviridae</em> under the order <em>Caudovirales</em>. We detected photosystem-related genes, sulfur assimilation genes, and <em>pho</em> regulon (phosphorus metabolism) genes in genomes of predicted cyanophages. We were able to capture the changes in relative abundance and expression of functional genes in genomes of cyanophage at different stages of the bloom. We observed higher relative abundance and expression of cyanophage-encoded <em>pho</em>-regulon genes in the “pre-bloom” period. The higher expression of <em>pho</em>-regulon genes in P-limited ecosystem of Utah Lake indicated the possible contribution of cyanophage to enhance the fitness of the host cyanobacteria. Our study provides some insightful findings on the role of cyanophages in controlling the ecology and relative abundance of host cyanobacteria in freshwater lakes.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"370 ","pages":"Article 143819"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524027206","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanophages play an important role in nutrient cycling in lakes since they can modulate the metabolism of cyanobacteria. A proper understanding of the impact of cyanophage infection on the metabolism and ecology of cyanobacteria is critical during a complete cycle of harmful algal bloom (HAB). The ecology of cyanophages in marine environments has been well-delineated, but cyanophages in freshwater lakes remain less studied. Here, we studied the diversity of cyanophages and their impact on host ecology and metabolism through the succession of HAB in Utah Lake, which is a shallow eutrophic freshwater lake, in 2019. We collected water samples at three different periods from two locations in freshwater Utah Lake. The three sampling periods represented the pre-bloom, peak-bloom, and post-bloom events. We observed that the Utah Lake virome was dominated by families Myoviridae, Siphoviridae, and Podoviridae under the order Caudovirales. We detected photosystem-related genes, sulfur assimilation genes, and pho regulon (phosphorus metabolism) genes in genomes of predicted cyanophages. We were able to capture the changes in relative abundance and expression of functional genes in genomes of cyanophage at different stages of the bloom. We observed higher relative abundance and expression of cyanophage-encoded pho-regulon genes in the “pre-bloom” period. The higher expression of pho-regulon genes in P-limited ecosystem of Utah Lake indicated the possible contribution of cyanophage to enhance the fitness of the host cyanobacteria. Our study provides some insightful findings on the role of cyanophages in controlling the ecology and relative abundance of host cyanobacteria in freshwater lakes.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.