{"title":"Neuroprotective Effect of Naturally Occurring Flavonoids.","authors":"Shweta Mishra","doi":"10.2174/0118715249344284241112184703","DOIUrl":null,"url":null,"abstract":"<p><p>Flavonoids have a wide range of neuroprotective effects on the brain, including the capacity to reduce neuroinflammation, shield neurons from harm caused by neurotoxins, and maybe improve memory, learning, and cognitive function. These functions are most likely a result of two similar mechanisms. Inhibiting neurotoxic substance-induced apoptosis and promoting synaptic plasticity and neuronal survival are achieved by first interacting with key protein and lipid kinase signaling pathways in the brain. Second, they have positive effects on the vascular system that alter cerebrovascular blood flow and can result in angiogenesis, neurogenesis, and morphological alterations in neurons. Through these pathways, eating foods high in flavonoids has the potential to avoid or delay age-related impairments in cognitive abilities as well as neurodegeneration. Due to the high level of interest in creating new pharmaceuticals that might improve the cognitive function of the brain, Flavonoids could be important preparatory substances in the development of a new class of brain-improving drugs.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249344284241112184703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flavonoids have a wide range of neuroprotective effects on the brain, including the capacity to reduce neuroinflammation, shield neurons from harm caused by neurotoxins, and maybe improve memory, learning, and cognitive function. These functions are most likely a result of two similar mechanisms. Inhibiting neurotoxic substance-induced apoptosis and promoting synaptic plasticity and neuronal survival are achieved by first interacting with key protein and lipid kinase signaling pathways in the brain. Second, they have positive effects on the vascular system that alter cerebrovascular blood flow and can result in angiogenesis, neurogenesis, and morphological alterations in neurons. Through these pathways, eating foods high in flavonoids has the potential to avoid or delay age-related impairments in cognitive abilities as well as neurodegeneration. Due to the high level of interest in creating new pharmaceuticals that might improve the cognitive function of the brain, Flavonoids could be important preparatory substances in the development of a new class of brain-improving drugs.