Siu Nam Li, Peter Peeling, Brendan R. Scott, Jeremiah J. Peiffer, Alex Shaykevich, Olivier Girard
{"title":"Systemic hypoxia has a larger effect on reducing the external load at lower exercise intensity during heart rate clamped cycling","authors":"Siu Nam Li, Peter Peeling, Brendan R. Scott, Jeremiah J. Peiffer, Alex Shaykevich, Olivier Girard","doi":"10.1002/ejsc.12204","DOIUrl":null,"url":null,"abstract":"<p>The effects of acute hypoxic exposure on mechanical output and internal responses during cycling with heart rate (HR) clamped at lactate thresholds 1 and 2 (LT1 and LT2, respectively) were investigated. On separate days, 12 trained males cycled for 15 min at a clamped HR corresponding to LT1 and LT2 under normoxic or hypoxic conditions (simulated altitude of ∼3500 m and inspired oxygen fraction of 13.6%). Power output (PO), arterial oxygen saturation, ventilatory and perceptual responses were measured every 3 min, with metabolic response assessed pre- and post-exercise. At LT1, PO was consistently lower in hypoxia compared to normoxia (<i>p</i> < 0.01). At LT2, PO was not different between normoxia and hypoxia at 3 and 6 min (both <i>p</i> > 0.42) but was significantly lower in hypoxia at 9, 12 and 15 min (all <i>p</i> < 0.04). Overall, hypoxia induced a greater decrease in PO at LT1 (−33.3% ± 11.3%) than at LT2 (−18.0 ± 14.7%) compared to normoxia. Ventilatory, perceptual and metabolic responses were influenced by exercise intensity (all <i>p</i> < 0.01) but not environmental conditions (all <i>p</i> > 0.17). A simulated altitude of ∼3500 m is more effective in reducing cycling PO at LT1 than LT2 during HR clamped cycling while maintaining other internal loads. Therefore, normobaric hypoxia provides a greater benefit via a larger decrease in the mechanical constraints of exercise at lower exercise intensities.</p>","PeriodicalId":93999,"journal":{"name":"European journal of sport science","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680552/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of sport science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejsc.12204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of acute hypoxic exposure on mechanical output and internal responses during cycling with heart rate (HR) clamped at lactate thresholds 1 and 2 (LT1 and LT2, respectively) were investigated. On separate days, 12 trained males cycled for 15 min at a clamped HR corresponding to LT1 and LT2 under normoxic or hypoxic conditions (simulated altitude of ∼3500 m and inspired oxygen fraction of 13.6%). Power output (PO), arterial oxygen saturation, ventilatory and perceptual responses were measured every 3 min, with metabolic response assessed pre- and post-exercise. At LT1, PO was consistently lower in hypoxia compared to normoxia (p < 0.01). At LT2, PO was not different between normoxia and hypoxia at 3 and 6 min (both p > 0.42) but was significantly lower in hypoxia at 9, 12 and 15 min (all p < 0.04). Overall, hypoxia induced a greater decrease in PO at LT1 (−33.3% ± 11.3%) than at LT2 (−18.0 ± 14.7%) compared to normoxia. Ventilatory, perceptual and metabolic responses were influenced by exercise intensity (all p < 0.01) but not environmental conditions (all p > 0.17). A simulated altitude of ∼3500 m is more effective in reducing cycling PO at LT1 than LT2 during HR clamped cycling while maintaining other internal loads. Therefore, normobaric hypoxia provides a greater benefit via a larger decrease in the mechanical constraints of exercise at lower exercise intensities.