Joshua M Popp, Katherine Rhodes, Radhika Jangi, Mingyuan Li, Kenneth Barr, Karl Tayeb, Alexis Battle, Yoav Gilad
{"title":"Cell type and dynamic state govern genetic regulation of gene expression in heterogeneous differentiating cultures.","authors":"Joshua M Popp, Katherine Rhodes, Radhika Jangi, Mingyuan Li, Kenneth Barr, Karl Tayeb, Alexis Battle, Yoav Gilad","doi":"10.1016/j.xgen.2024.100701","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying the molecular effects of human genetic variation across cellular contexts is crucial for understanding the mechanisms underlying disease-associated loci, yet many cell types and developmental stages remain underexplored. Here, we harnessed the potential of heterogeneous differentiating cultures (HDCs), an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell types. We generated HDCs for 53 human donors and collected single-cell RNA sequencing data from over 900,000 cells. We identified expression quantitative trait loci in 29 cell types and characterized regulatory dynamics across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key developmental and disease-related processes while replicating known effects from primary tissues and dynamic regulatory effects associated with a range of complex traits.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100701"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying the molecular effects of human genetic variation across cellular contexts is crucial for understanding the mechanisms underlying disease-associated loci, yet many cell types and developmental stages remain underexplored. Here, we harnessed the potential of heterogeneous differentiating cultures (HDCs), an in vitro system in which pluripotent cells asynchronously differentiate into a broad spectrum of cell types. We generated HDCs for 53 human donors and collected single-cell RNA sequencing data from over 900,000 cells. We identified expression quantitative trait loci in 29 cell types and characterized regulatory dynamics across diverse differentiation trajectories. This revealed novel regulatory variants for genes involved in key developmental and disease-related processes while replicating known effects from primary tissues and dynamic regulatory effects associated with a range of complex traits.