{"title":"Adaptive output feedback fault-tolerant control for a class of nonlinear systems based on a sensor fusion mechanism","authors":"Chen Sun , Yan Lin , Qingrui Meng , Lin Li","doi":"10.1016/j.isatra.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates an output feedback adaptive fault-tolerant tracking control for a class of nonlinear systems with system nonlinearities, sensor failures and external disturbances, in which sensor redundancy is employed to enhance measurement reliability. A sensor fusion mechanism, together with a novel history-based weighted average algorithm is first designed to fuse all sensor outputs. Then, an adaptive controller based on the sensor fusion output, a dynamic gain and a state observer is constructed to handle all the uncertainties caused by system nonlinearities, external disturbances, sensor failures and fusion mechanism. It is shown that by using the proposed scheme, the closed-loop system is stable, the sensor fusion mechanism can eliminate the effects of faulty sensors, and the real tracking error can be driven into a small compact set mainly affected by the fusion error. Experimental results are accomplished to validate the proposed scheme.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"156 ","pages":"Pages 457-467"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824005287","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates an output feedback adaptive fault-tolerant tracking control for a class of nonlinear systems with system nonlinearities, sensor failures and external disturbances, in which sensor redundancy is employed to enhance measurement reliability. A sensor fusion mechanism, together with a novel history-based weighted average algorithm is first designed to fuse all sensor outputs. Then, an adaptive controller based on the sensor fusion output, a dynamic gain and a state observer is constructed to handle all the uncertainties caused by system nonlinearities, external disturbances, sensor failures and fusion mechanism. It is shown that by using the proposed scheme, the closed-loop system is stable, the sensor fusion mechanism can eliminate the effects of faulty sensors, and the real tracking error can be driven into a small compact set mainly affected by the fusion error. Experimental results are accomplished to validate the proposed scheme.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.