Adolescent brain maturation associated with environmental factors: a multivariate analysis.

Frontiers in neuroimaging Pub Date : 2024-11-19 eCollection Date: 2024-01-01 DOI:10.3389/fnimg.2024.1390409
Bhaskar Ray, Dawn Jensen, Pranav Suresh, Bishal Thapaliya, Ram Sapkota, Britny Farahdel, Zening Fu, Jiayu Chen, Vince D Calhoun, Jingyu Liu
{"title":"Adolescent brain maturation associated with environmental factors: a multivariate analysis.","authors":"Bhaskar Ray, Dawn Jensen, Pranav Suresh, Bishal Thapaliya, Ram Sapkota, Britny Farahdel, Zening Fu, Jiayu Chen, Vince D Calhoun, Jingyu Liu","doi":"10.3389/fnimg.2024.1390409","DOIUrl":null,"url":null,"abstract":"<p><p>Human adolescence marks a crucial phase of extensive brain development, highly susceptible to environmental influences. Employing brain age estimation to assess individual brain aging, we categorized individuals (<i>N</i> = 7,435, aged 9-10 years old) from the Adolescent Brain and Cognitive Development (ABCD) cohort into groups exhibiting either accelerated or delayed brain maturation, where the accelerated group also displayed increased cognitive performance compared to their delayed counterparts. A 4-way multi-set canonical correlation analysis integrating three modalities of brain metrics (gray matter density, brain morphological measures, and functional network connectivity) with nine environmental factors unveiled a significant 4-way canonical correlation between linked patterns of neural features, air pollution, area crime, and population density. Correlations among the three brain modalities were notably strong (ranging from 0.65 to 0.77), linking reduced gray matter density in the middle temporal gyrus and precuneus to decreased volumes in the left medial orbitofrontal cortex paired with increased cortical thickness in the right supramarginal and bilateral occipital regions, as well as increased functional connectivity in occipital sub-regions. These specific brain characteristics were significantly more pronounced in the accelerated brain aging group compared to the delayed group. Additionally, these brain regions exhibited significant associations with air pollution, area crime, and population density, where lower air pollution and higher area crime and population density were correlated to brain variations more prominently in the accelerated brain aging group.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1390409"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2024.1390409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human adolescence marks a crucial phase of extensive brain development, highly susceptible to environmental influences. Employing brain age estimation to assess individual brain aging, we categorized individuals (N = 7,435, aged 9-10 years old) from the Adolescent Brain and Cognitive Development (ABCD) cohort into groups exhibiting either accelerated or delayed brain maturation, where the accelerated group also displayed increased cognitive performance compared to their delayed counterparts. A 4-way multi-set canonical correlation analysis integrating three modalities of brain metrics (gray matter density, brain morphological measures, and functional network connectivity) with nine environmental factors unveiled a significant 4-way canonical correlation between linked patterns of neural features, air pollution, area crime, and population density. Correlations among the three brain modalities were notably strong (ranging from 0.65 to 0.77), linking reduced gray matter density in the middle temporal gyrus and precuneus to decreased volumes in the left medial orbitofrontal cortex paired with increased cortical thickness in the right supramarginal and bilateral occipital regions, as well as increased functional connectivity in occipital sub-regions. These specific brain characteristics were significantly more pronounced in the accelerated brain aging group compared to the delayed group. Additionally, these brain regions exhibited significant associations with air pollution, area crime, and population density, where lower air pollution and higher area crime and population density were correlated to brain variations more prominently in the accelerated brain aging group.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信