{"title":"Effects of temperature experienced across life stages on morphology and flight behavior of painted lady butterflies (Vanessa cardui).","authors":"Sarah P Mesler, Karen E Mabry","doi":"10.1186/s40462-024-00516-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With ongoing anthropogenic climate change, there is increasing interest in how organisms are affected by higher temperatures, including how animals respond behaviorally to increasing temperatures. Movement behavior is especially relevant, as the ability of a species to shift its range is implicitly dependent upon movement capacity and motivation. Temperature may influence movement behavior of ectotherms both directly, through an increase in body temperature, and indirectly, through temperature-dependent effects on physiological and morphological traits.</p><p><strong>Methods: </strong>We investigated the influence of ambient temperature during two life stages, larval and adult, on body size and movement behavior of the painted lady butterfly (Vanessa cardui). We reared painted ladies to emergence at either a \"low\" (24 °C) or \"high\" (28 °C) temperature. At eclosion, we assessed flight behavior in an arena test. We used a full factorial experimental design in which half of the adults that emerged from each rearing treatment were tested at either the \"low\" or \"high\" temperature. We measured adult body size, including wingspan, and determined flight speed, distance, and duration from video recordings.</p><p><strong>Results: </strong>Adult butterflies that experienced the higher temperature during development were larger. We documented an interaction of rearing x testing temperature on flight behavior: unexpectedly, the fastest butterflies were those who experienced a change in temperature, whether an increase or decrease, between rearing and testing. Individuals that experienced matching thermal environments flew more slowly, but for more time and covering more distance. We found no influence of body size per se on flight.</p><p><strong>Conclusions: </strong>We conclude that the potential role of \"matching\" thermal environments across life stages has been underinvestigated with regard to how organisms may respond to warming conditions.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"12 1","pages":"76"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00516-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: With ongoing anthropogenic climate change, there is increasing interest in how organisms are affected by higher temperatures, including how animals respond behaviorally to increasing temperatures. Movement behavior is especially relevant, as the ability of a species to shift its range is implicitly dependent upon movement capacity and motivation. Temperature may influence movement behavior of ectotherms both directly, through an increase in body temperature, and indirectly, through temperature-dependent effects on physiological and morphological traits.
Methods: We investigated the influence of ambient temperature during two life stages, larval and adult, on body size and movement behavior of the painted lady butterfly (Vanessa cardui). We reared painted ladies to emergence at either a "low" (24 °C) or "high" (28 °C) temperature. At eclosion, we assessed flight behavior in an arena test. We used a full factorial experimental design in which half of the adults that emerged from each rearing treatment were tested at either the "low" or "high" temperature. We measured adult body size, including wingspan, and determined flight speed, distance, and duration from video recordings.
Results: Adult butterflies that experienced the higher temperature during development were larger. We documented an interaction of rearing x testing temperature on flight behavior: unexpectedly, the fastest butterflies were those who experienced a change in temperature, whether an increase or decrease, between rearing and testing. Individuals that experienced matching thermal environments flew more slowly, but for more time and covering more distance. We found no influence of body size per se on flight.
Conclusions: We conclude that the potential role of "matching" thermal environments across life stages has been underinvestigated with regard to how organisms may respond to warming conditions.
Movement EcologyAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍:
Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.