Transcription-coupled repair of DNA-protein crosslinks.

IF 13 1区 生物学 Q1 CELL BIOLOGY
Christopher J Carnie, Stephen P Jackson, Julian Stingele
{"title":"Transcription-coupled repair of DNA-protein crosslinks.","authors":"Christopher J Carnie, Stephen P Jackson, Julian Stingele","doi":"10.1016/j.tcb.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>DNA-protein crosslinks (DPCs) are highly toxic DNA lesions that are relevant to multiple human diseases. They are caused by various endogenous and environmental agents, and from the actions of enzymes such as topoisomerases. DPCs impede DNA polymerases, triggering replication-coupled DPC repair. Until recently the consequences of DPC blockade of RNA polymerases remained unclear. New methodologies for studying DPC repair have enabled the discovery of a transcription-coupled (TC) DPC repair pathway. Briefly, RNA polymerase II (RNAPII) stalling initiates TC-DPC repair, leading to sequential engagement of Cockayne syndrome (CS) proteins CSB and CSA, and to proteasomal degradation of the DPC. Deficient TC-DPC repair caused by loss of CSA or CSB function may help to explain the complex clinical presentation of CS patients.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2024.11.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions that are relevant to multiple human diseases. They are caused by various endogenous and environmental agents, and from the actions of enzymes such as topoisomerases. DPCs impede DNA polymerases, triggering replication-coupled DPC repair. Until recently the consequences of DPC blockade of RNA polymerases remained unclear. New methodologies for studying DPC repair have enabled the discovery of a transcription-coupled (TC) DPC repair pathway. Briefly, RNA polymerase II (RNAPII) stalling initiates TC-DPC repair, leading to sequential engagement of Cockayne syndrome (CS) proteins CSB and CSA, and to proteasomal degradation of the DPC. Deficient TC-DPC repair caused by loss of CSA or CSB function may help to explain the complex clinical presentation of CS patients.

dna -蛋白交联的转录偶联修复。
DNA-蛋白交联(DPCs)是与多种人类疾病相关的高毒性DNA病变。它们是由各种内源性和环境因子以及拓扑异构酶等酶的作用引起的。DPC阻碍DNA聚合酶,触发复制偶联DPC修复。直到最近,DPC阻断RNA聚合酶的后果仍不清楚。研究DPC修复的新方法使得转录偶联(TC) DPC修复途径得以发现。简而言之,RNA聚合酶II (RNAPII)停滞启动TC-DPC修复,导致柯凯因综合征(CS)蛋白CSB和CSA的连续参与,并导致DPC的蛋白酶体降解。CSA或CSB功能缺失导致TC-DPC修复缺陷可能有助于解释CS患者复杂的临床表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Trends in Cell Biology
Trends in Cell Biology 生物-细胞生物学
CiteScore
32.00
自引率
0.50%
发文量
160
审稿时长
61 days
期刊介绍: Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信