The Influence Mechanism of Screw Internal Fixation on the Biomechanics of Lateral Malleolus Oblique Fractures.

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Xinyuan Shi, Shuanzhu Wang, Yongzhi Gong, Shibo Gu, Haiquan Feng
{"title":"The Influence Mechanism of Screw Internal Fixation on the Biomechanics of Lateral Malleolus Oblique Fractures.","authors":"Xinyuan Shi, Shuanzhu Wang, Yongzhi Gong, Shibo Gu, Haiquan Feng","doi":"10.1002/cnm.3895","DOIUrl":null,"url":null,"abstract":"<p><p>It remains inconclusive about the stability and optimal fixation scheme of screw internal fixation for lateral malleolus oblique fractures in clinical practice. In this study, the effects of different screw internal fixation methods on the biomechanics of lateral malleolus oblique fractures were investigated. These efforts are expected to lay a theoretical foundation for the selection of internal fixation methods and rehabilitation training regimens in the treatment of lateral malleolus fractures. A healthy ankle joint model and a lateral malleolus fracture internal fixation model were established based on CT data with the aid of some software. Besides, the effects of screw internal fixation modalities on the fracture displacement of fibula fractures, fibula Von Mises stress, and screw Von Mises stress under different physiological conditions and loading conditions were investigated using finite element methods (FEMs) and in vitro physical experiments. The double screw vertical fibular axis internal fixation approach had the lowest fracture displacement of fibula fractures and screw Von Mises stress values; while the double screw vertical fracture line internal fixation approach had the lowest fibula Von Mises stress values. Under different physiological conditions, the magnitude of the peak Von Mises stress of the fibula and screw was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 10° > dorsiflexion 20°; and the magnitude of the peak displacement of the fibula fracture breaks was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 20° > dorsiflexion 10°. The results of in vitro physical experiments and finite element analyses were in good agreement, which validated the validity of finite element analyses. The vertical fracture line screw implantation method displays a better load-sharing ability; while the vertical fibular axis screw implantation method exhibits a better ability to prevent axial shortening of the fibula and also reduces the risk of screw fatigue damage. Overall, the double screw achieves better therapeutic effects than the single screw. Given that the ankle joint has high stability in the dorsiflexion position, it is recommended to prioritize dorsiflexion rehabilitation training, rather than dorsiflexion and plantarflexion rehabilitation training with too large angles, in the treatment of lateral malleolus fractures.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3895"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3895","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It remains inconclusive about the stability and optimal fixation scheme of screw internal fixation for lateral malleolus oblique fractures in clinical practice. In this study, the effects of different screw internal fixation methods on the biomechanics of lateral malleolus oblique fractures were investigated. These efforts are expected to lay a theoretical foundation for the selection of internal fixation methods and rehabilitation training regimens in the treatment of lateral malleolus fractures. A healthy ankle joint model and a lateral malleolus fracture internal fixation model were established based on CT data with the aid of some software. Besides, the effects of screw internal fixation modalities on the fracture displacement of fibula fractures, fibula Von Mises stress, and screw Von Mises stress under different physiological conditions and loading conditions were investigated using finite element methods (FEMs) and in vitro physical experiments. The double screw vertical fibular axis internal fixation approach had the lowest fracture displacement of fibula fractures and screw Von Mises stress values; while the double screw vertical fracture line internal fixation approach had the lowest fibula Von Mises stress values. Under different physiological conditions, the magnitude of the peak Von Mises stress of the fibula and screw was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 10° > dorsiflexion 20°; and the magnitude of the peak displacement of the fibula fracture breaks was ranked as plantarflexion 20° > plantarflexion 10° > neutral position > dorsiflexion 20° > dorsiflexion 10°. The results of in vitro physical experiments and finite element analyses were in good agreement, which validated the validity of finite element analyses. The vertical fracture line screw implantation method displays a better load-sharing ability; while the vertical fibular axis screw implantation method exhibits a better ability to prevent axial shortening of the fibula and also reduces the risk of screw fatigue damage. Overall, the double screw achieves better therapeutic effects than the single screw. Given that the ankle joint has high stability in the dorsiflexion position, it is recommended to prioritize dorsiflexion rehabilitation training, rather than dorsiflexion and plantarflexion rehabilitation training with too large angles, in the treatment of lateral malleolus fractures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信