Bettine G Van Willigen, M Beatrijs van der Hout-van der Jagt, Wouter Huberts, Frans N van de Vosse
{"title":"A Multiscale Mathematical Model for Fetal Gas Transport and Regulatory Systems During Second Half of Pregnancy.","authors":"Bettine G Van Willigen, M Beatrijs van der Hout-van der Jagt, Wouter Huberts, Frans N van de Vosse","doi":"10.1002/cnm.3881","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal asphyxia, a condition resulting from the combined effects of hypoxia and hypercapnia, leads to approximately 900,000 annual deaths worldwide. One cause is umbilical cord compression during labor-induced uterine contractions, disrupting the transport of metabolites to and from the placenta, and resulting in asphyxia. Current fetal well-being assessment relies on monitoring fetal heart rate and uterine contractions as indicators of oxygen delivery to the brain. To enhance our understanding of this complex relationship, this study aims to develop a modular mathematical model including fetal blood gas dynamics, the autonomic nervous system, and cerebral blood flow regulation. The novelty of this study lies in the capability of the model to simulate fetal growth. These submodels are part of a larger multiscale mathematical model describing fetal circulation in the second half of pregnancy. The blood gas model realistically replicates partial oxygen and carbon dioxide pressures in umbilical arteries and veins during healthy fetal development reported in the literature. An in silico experiment is conducted to simulate umbilical cord occlusion and is compared with lamb experiments to verify the realism of the regulation models during fetal growth. Our findings suggest that premature infants are more susceptible to umbilical cord occlusion, exhibiting elevated cerebral perfusion pressure and flow. This modular mathematical model may serve as a valuable tool for testing hypotheses related to the fetal regulatory system.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":" ","pages":"e3881"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661441/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cnm.3881","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fetal asphyxia, a condition resulting from the combined effects of hypoxia and hypercapnia, leads to approximately 900,000 annual deaths worldwide. One cause is umbilical cord compression during labor-induced uterine contractions, disrupting the transport of metabolites to and from the placenta, and resulting in asphyxia. Current fetal well-being assessment relies on monitoring fetal heart rate and uterine contractions as indicators of oxygen delivery to the brain. To enhance our understanding of this complex relationship, this study aims to develop a modular mathematical model including fetal blood gas dynamics, the autonomic nervous system, and cerebral blood flow regulation. The novelty of this study lies in the capability of the model to simulate fetal growth. These submodels are part of a larger multiscale mathematical model describing fetal circulation in the second half of pregnancy. The blood gas model realistically replicates partial oxygen and carbon dioxide pressures in umbilical arteries and veins during healthy fetal development reported in the literature. An in silico experiment is conducted to simulate umbilical cord occlusion and is compared with lamb experiments to verify the realism of the regulation models during fetal growth. Our findings suggest that premature infants are more susceptible to umbilical cord occlusion, exhibiting elevated cerebral perfusion pressure and flow. This modular mathematical model may serve as a valuable tool for testing hypotheses related to the fetal regulatory system.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.