{"title":"WNT9A and WNT9B in Development and Disease.","authors":"Amber D Ide, Stephanie Grainger","doi":"10.1016/j.diff.2024.100820","DOIUrl":null,"url":null,"abstract":"<p><p>WNT9 paralogues, WNT9A and WNT9B, are secreted ligands driving both the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. These pathways play roles in cell fate determination, embryonic patterning, bone development, and organogenesis, among other biological processes. Studies of Wnt9a and Wnt9b mutant animals demonstrate that they have specific and overlapping roles in these processes. Wnt9a is critical in directing stem and progenitor cell fate during hematopoietic stem cell development, proper bone formation, and chondrogenesis, while Wnt9b is important for kidney and heart development. Both proteins are essential in craniofacial development and convergent extension movements. Dysregulated expression of human WNT9A and WNT9B have been implicated in different cancers and disease, suggesting these proteins or their downstream pathways may represent potential therapeutic targets.</p>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":" ","pages":"100820"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.diff.2024.100820","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
WNT9 paralogues, WNT9A and WNT9B, are secreted ligands driving both the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. These pathways play roles in cell fate determination, embryonic patterning, bone development, and organogenesis, among other biological processes. Studies of Wnt9a and Wnt9b mutant animals demonstrate that they have specific and overlapping roles in these processes. Wnt9a is critical in directing stem and progenitor cell fate during hematopoietic stem cell development, proper bone formation, and chondrogenesis, while Wnt9b is important for kidney and heart development. Both proteins are essential in craniofacial development and convergent extension movements. Dysregulated expression of human WNT9A and WNT9B have been implicated in different cancers and disease, suggesting these proteins or their downstream pathways may represent potential therapeutic targets.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.