Hyperspectral imaging in animal coloration research: A user-friendly pipeline for image generation, analysis, and integration with 3D modeling.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2024-12-03 eCollection Date: 2024-12-01 DOI:10.1371/journal.pbio.3002867
Benedict G Hogan, Mary Caswell Stoddard
{"title":"Hyperspectral imaging in animal coloration research: A user-friendly pipeline for image generation, analysis, and integration with 3D modeling.","authors":"Benedict G Hogan, Mary Caswell Stoddard","doi":"10.1371/journal.pbio.3002867","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperspectral imaging-a technique that combines the high spectral resolution of spectrophotometry with the high spatial resolution of photography-holds great promise for the study of animal coloration. However, applications of hyperspectral imaging to questions about the ecology and evolution of animal color remain relatively rare. The approach can be expensive and unwieldy, and we lack user-friendly pipelines for capturing and analyzing hyperspectral data in the context of animal color. Fortunately, costs are decreasing and hyperspectral imagers are improving, particularly in their sensitivity to wavelengths (including ultraviolet) visible to diverse animal species. To highlight the potential of hyperspectral imaging for animal coloration studies, we developed a pipeline for capturing, sampling, and analyzing hyperspectral data (here, in the 325 nm to 700 nm range) using avian museum specimens. Specifically, we used the pipeline to characterize the plumage colors of the King bird-of-paradise (Cicinnurus regius), Magnificent bird-of-paradise (C. magnificus), and their putative hybrid, the King of Holland's bird-of-paradise (C. magnificus x C. regius). We also combined hyperspectral data with 3D digital models to supplement hyperspectral images of each specimen with 3D shape information. Using visual system-independent methods, we found that many plumage patches on the hybrid King of Holland's bird-of-paradise are-to varying degrees-intermediate relative to those of the parent species. This was true of both pigmentary and structurally colored plumage patches. Using visual system-dependent methods, we showed that only some of the differences in plumage patches among the hybrid and its parent species would be perceivable by birds. Hyperspectral imaging is poised to become the gold standard for many animal coloration applications: comprehensive reflectance data-across the entire surface of an animal specimen-can be obtained in a matter of minutes. Our pipeline provides a practical and flexible roadmap for incorporating hyperspectral imaging into future studies of animal color.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 12","pages":"e3002867"},"PeriodicalIF":9.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002867","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperspectral imaging-a technique that combines the high spectral resolution of spectrophotometry with the high spatial resolution of photography-holds great promise for the study of animal coloration. However, applications of hyperspectral imaging to questions about the ecology and evolution of animal color remain relatively rare. The approach can be expensive and unwieldy, and we lack user-friendly pipelines for capturing and analyzing hyperspectral data in the context of animal color. Fortunately, costs are decreasing and hyperspectral imagers are improving, particularly in their sensitivity to wavelengths (including ultraviolet) visible to diverse animal species. To highlight the potential of hyperspectral imaging for animal coloration studies, we developed a pipeline for capturing, sampling, and analyzing hyperspectral data (here, in the 325 nm to 700 nm range) using avian museum specimens. Specifically, we used the pipeline to characterize the plumage colors of the King bird-of-paradise (Cicinnurus regius), Magnificent bird-of-paradise (C. magnificus), and their putative hybrid, the King of Holland's bird-of-paradise (C. magnificus x C. regius). We also combined hyperspectral data with 3D digital models to supplement hyperspectral images of each specimen with 3D shape information. Using visual system-independent methods, we found that many plumage patches on the hybrid King of Holland's bird-of-paradise are-to varying degrees-intermediate relative to those of the parent species. This was true of both pigmentary and structurally colored plumage patches. Using visual system-dependent methods, we showed that only some of the differences in plumage patches among the hybrid and its parent species would be perceivable by birds. Hyperspectral imaging is poised to become the gold standard for many animal coloration applications: comprehensive reflectance data-across the entire surface of an animal specimen-can be obtained in a matter of minutes. Our pipeline provides a practical and flexible roadmap for incorporating hyperspectral imaging into future studies of animal color.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信