Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Huarong Yue, Jianwei Xia, Jing Zhang, Ju H Park, Xiangpeng Xie
{"title":"Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm.","authors":"Huarong Yue, Jianwei Xia, Jing Zhang, Ju H Park, Xiangpeng Xie","doi":"10.1016/j.neunet.2024.106952","DOIUrl":null,"url":null,"abstract":"<p><p>This article investigates the problem of adaptive fixed-time optimal consensus tracking control for nonlinear multiagent systems (MASs) affected by actuator faults and input saturation. To achieve optimal control, reinforcement learning (RL) algorithm which is implemented based on neural network (NN) is employed. Under the actor-critic structure, an innovative simple positive definite function is constructed to obtain the upper bound of the estimation error of the actor-critic NN updating law, which is crucial for analyzing fixed-time stabilization. Furthermore, auxiliary functions and estimation laws are designed to eliminate the coupling effects resulting from actuator faults and input saturation. Meanwhile, a novel event-triggered mechanism (ETM) that incorporates the consensus tracking errors into the threshold is proposed, thereby effectively conserving communication resources. Based on this, a fixed-time event-triggered control scheme grounded in RL is proposed through the integration of the backstepping technique and fixed-time theory. It is demonstrated that the consensus tracking errors converge to a specified range in a fixed time and all signals within the closed-loop systems are bounded. Finally, simulation results are provided to verify the effectiveness of the proposed control strategy.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106952"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106952","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the problem of adaptive fixed-time optimal consensus tracking control for nonlinear multiagent systems (MASs) affected by actuator faults and input saturation. To achieve optimal control, reinforcement learning (RL) algorithm which is implemented based on neural network (NN) is employed. Under the actor-critic structure, an innovative simple positive definite function is constructed to obtain the upper bound of the estimation error of the actor-critic NN updating law, which is crucial for analyzing fixed-time stabilization. Furthermore, auxiliary functions and estimation laws are designed to eliminate the coupling effects resulting from actuator faults and input saturation. Meanwhile, a novel event-triggered mechanism (ETM) that incorporates the consensus tracking errors into the threshold is proposed, thereby effectively conserving communication resources. Based on this, a fixed-time event-triggered control scheme grounded in RL is proposed through the integration of the backstepping technique and fixed-time theory. It is demonstrated that the consensus tracking errors converge to a specified range in a fixed time and all signals within the closed-loop systems are bounded. Finally, simulation results are provided to verify the effectiveness of the proposed control strategy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信