Retroviral CRISPR/Cas9-Mediated Gene Targeting for the Study of Th17 Differentiation in Vitro.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Zejin Cui, Pengkun Yuan, Zhishan Zhao, Fan Zhao, Linrong Lu
{"title":"Retroviral CRISPR/Cas9-Mediated Gene Targeting for the Study of Th17 Differentiation in Vitro.","authors":"Zejin Cui, Pengkun Yuan, Zhishan Zhao, Fan Zhao, Linrong Lu","doi":"10.3791/66966","DOIUrl":null,"url":null,"abstract":"<p><p>T helper cells that produce IL-17A, known as Th17 cells, play a critical role in immune defense and are implicated in autoimmune disorders. CD4 T cells can be stimulated with antigens and well-defined cytokine cocktails in vitro to mimic Th17 cell differentiation in vivo. Research has been conducted extensively on the Th17 differentiation regulation mechanisms using the in vitro Th17 polarization assay. Conventional Th17 polarization methods typically involve obtaining naïve CD4 T cells from genetically modified mice to study the effects of specific genes on Th17 differentiation and function. These methods can be time-consuming and costly and may be influenced by cell-extrinsic factors from the knockout animals. Thus, a protocol using retroviral transduction of guide RNA to introduce gene knockout in CRISPR/Cas9 knockin primary mouse T cells serves as a very useful alternative approach. This paper presents a protocol to differentiate naïve primary T cells into Th17 cells following retroviral-mediated gene targeting, as well as the subsequent flow cytometry analysis methods for assaying infection and differentiation efficiency.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66966","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

T helper cells that produce IL-17A, known as Th17 cells, play a critical role in immune defense and are implicated in autoimmune disorders. CD4 T cells can be stimulated with antigens and well-defined cytokine cocktails in vitro to mimic Th17 cell differentiation in vivo. Research has been conducted extensively on the Th17 differentiation regulation mechanisms using the in vitro Th17 polarization assay. Conventional Th17 polarization methods typically involve obtaining naïve CD4 T cells from genetically modified mice to study the effects of specific genes on Th17 differentiation and function. These methods can be time-consuming and costly and may be influenced by cell-extrinsic factors from the knockout animals. Thus, a protocol using retroviral transduction of guide RNA to introduce gene knockout in CRISPR/Cas9 knockin primary mouse T cells serves as a very useful alternative approach. This paper presents a protocol to differentiate naïve primary T cells into Th17 cells following retroviral-mediated gene targeting, as well as the subsequent flow cytometry analysis methods for assaying infection and differentiation efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信